Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Parallel flow in a cylindrical domain

Reika Aoyama

MI 2014-3

(Received February 13, 2014)
Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Parallel flow in a cylindrical domain

Reika Aoyama
Graduate School of Mathematics,
Kyushu University,
Fukuoka, 819-0395, JAPAN

Abstract: This paper is concerned with the stability of a parallel flow of the compressible Navier-Stokes equation in a cylindrical domain. Decay estimates on the linearized semigroup is established. It is shown that if the Reynolds and Mach numbers are sufficiently small, then solutions of the linearized problem decay in the L^2-norm as a one dimensional heat kernel. The proof is given by a variant of the Matsumura-Nishida energy method.

Keywords: Compressible Navier-Stokes equation, Parallel flow, cylindrical domain, linearized semigroup, decay estimates

1 INTRODUCTION

We consider the system of equations for a barotropic motion of viscous compressible gas

\[
\begin{align*}
\partial_t \rho + \text{div}(\rho v) &= 0, \quad t > 0, \quad x \in \Omega, \\
\rho(\partial_t v + v \cdot \nabla v) - \mu \Delta v - (\mu + \mu') \nabla \text{div} v + \nabla P(\rho) &= \rho g
\end{align*}
\]

in a cylindrical domain $\Omega = D \times \mathbb{R}$:

\[
\Omega = \{x = (x', x_3); \ x' = (x_1, x_2) \in D, x_3 \in \mathbb{R}\}.
\]

Here D is a bounded and connected domain in \mathbb{R}^2 with a smooth boundary ∂D; $\rho = \rho(x, t)$ and $v = (v^1(x, t), v^2(x, t), v^3(x, t))$ denote the unknown density and velocity at time $t \geq 0$ and position $x \in \Omega$, respectively; $P(\rho)$ is the pressure that is a smooth function of ρ and satisfies

\[
P'(\rho_*) > 0
\]
for a given positive constant \(\rho_s \); \(\mu \) and \(\mu' \) are the viscosity coefficients that are assumed to be constants satisfying
\[
\mu > 0, \quad \frac{2}{3} \mu + \mu' \geq 0;
\]
and \(g \) is an external force of the form \(g = T(g^1(x'), g^2(x'), g^3(x')) \) with \(g^1 \) and \(g^2 \) satisfying
\[
(g^1(x'), g^2(x')) = \left(\partial_{x_1} \Phi(x'), \partial_{x_2} \Phi(x') \right),
\]
where \(\Phi \) and \(g^3 \) are given smooth functions of \(x' \). Here and in what follows \(T \) stands for the transposition.

The system (1.1)-(1.2) is considered under the boundary condition
\[
v \mid_{\partial\Omega} = 0 \quad (1.3)
\]
and the initial condition
\[
(\rho, v) \mid_{t=0} = (\rho_0, v_0). \quad (1.4)
\]

One can see that problem (1.1)-(1.3) has the stationary solution \(\overline{u}_s = T(\overline{\rho}_s, \overline{v}_s) \); \(\overline{\rho}_s \) is determined by
\[
\begin{cases}
\text{Const.} - \Phi(x') = \int_{\rho_s}^{\overline{\rho}_s} \frac{P''(\eta)}{\eta} d\eta, \\
\int_{\Omega} \overline{\rho}_s - \rho_s \, dx' = 0;
\end{cases}
\]
and \(\overline{v}_s \) takes the form
\[
\overline{v}_s = T(0, 0, \overline{v}^3_s(x')),
\]
where \(\overline{v}^3_s(x') \) is the solution of
\[
\begin{cases}
-\Delta \overline{v}^3_s = \overline{v}_s g^3, \\
\overline{v}^3_s \mid_{\partial\Omega} = 0.
\end{cases}
\]

We are interested in the large time behavior of solutions to problem (1.1)-(1.4) when the initial value \((\rho, v) \mid_{t=0} = (\rho_0, v_0) \) is sufficiently close to the stationary solution \(\overline{u}_s = T(\overline{\rho}_s, \overline{v}_s) \). As a first step of the analysis, we study the linearized problem in this paper and establish decay estimates on solutions of the linearized equation around the parallel flow \(\overline{u}_s \).

Let us introduce some known results for stability of a parallel flow. In Kagei-Nagahuchi-Sudou [7], the stability of a plane Poiseuille type flow in an infinite layer of \(\mathbb{R}^2 \) was considered under the perturbations in some \(L^2 \)-Sobolev space on the infinite layer. It was shown in [7] that the low frequency part of the linearized semigroup behaves like \(n - 1 \) dimensional heat kernel and the high frequency part decays exponentially as \(t \to \infty \), provided that the Reynolds and Mach numbers are sufficiently small and the density of the parallel flow is sufficiently close to the given constant \(\rho_s \). The nonlinear problem was studied by Kagei [6]; and it was proved that the stationary parallel flow is asymptotically stable under sufficiently small initial perturbations in some \(L^2 \)-Sobolev space. Furthermore, the asymptotic behavior of the perturbation is described by an \(n - 1 \) dimensional heat equation when \(n \geq 3 \).
When \(n = 2 \), the asymptotic behavior of the perturbation is no longer described by a linear equation but by a one dimensional viscous Burgers equation.

As for the case of the cylindrical domain \(\Omega \), Iooss and Padula [3] studied the linearized stability of a stationary parallel flow in \(\Omega \) under the perturbations periodic in \(x_3 \). It was shown that the linearized operator generates a \(C_0 \)-semigroup in \(L^2 \) on the basic periodicity cell under vanishing average condition for the density-component. In particular, if the Reynolds number is suitably small, then the semigroup decays exponentially as time goes to infinity.

On the other hand, in Kagei-Nukumizu [9], the stability of the motionless state \(\tilde{u}_s = t(\rho_s, 0) \) was considered under the perturbations in some \(L^2 \)-Sobolev space on \(\Omega \). It was shown in [9] that the solution of the linearized problem decays in \(L^2(\Omega) \) in the order \(t^{-\frac{1}{2}} \) and its asymptotic leading parts is given by a solution of a one dimensional heat equation. Furthermore, the asymptotic leading part of the perturbation is given by that for the linearized problem. (See also [4].)

The purpose of this paper is to extend the analysis for the rest state in [9] to the case of the general parallel flow in a cylindrical domain. We will establish decay estimates for solutions of the linearized problem for (1.1)-(1.4), which play an important role in the analysis of the nonlinear problem. To state our result more precisely, consider the non-dimensional linearized problem:

\[
\partial_t u + Lu = 0, \quad u \big|_{t=0} = u_0.
\]

(1.5)

Here \(u = T(\phi, w) = T(\gamma^2(\rho - \rho_s), v - v_s) \), and \(L \) denotes the linearized operator on \(L^2(\tilde{\Omega}) \) defined by

\[
L = \left(\begin{array}{c}
\nu \cdot \nabla \\
\nabla \left(P'(\rho_s) \right) \\
\gamma^2 \nu \Delta I_3 - \frac{\nu}{\rho_s} \nabla \nu \Delta I_3 + v_s \cdot \nabla \\
\nu \left(\begin{array}{c}
0 \\
0 \\
T(\nabla v_s)
\end{array} \right)
\end{array} \right),
\]

with domain

\[
D(L) = \{ u = T(\phi, w) \in L^2(\tilde{\Omega}); \quad w \in H^1_0(\tilde{\Omega}), \quad Lu \in L^2(\tilde{\Omega}) \},
\]

where \(\tilde{\Omega}, \tilde{D}, \tilde{\nu}, \tilde{v}, \rho_s, v_s \) and \(\tilde{P}(\rho_s) \) are the non-dimensional form of \(\Omega, D, \nu, v, \rho_s, v_s \) and \(P(\rho_s) \) respectively; \(I_3 \) denotes the \(3 \times 3 \) identity matrix; \(\nu, \nu' \) and \(\gamma \) are some positive constants. We will prove that the linearized semigroup \(u(t) = e^{-tL}u_0 \) satisfies

\[
\| \partial_x^k \partial_{x_3}^l u(t) \|_{L^2(\tilde{\Omega})} \leq C \left\{ t^{-\frac{1}{2} - \frac{l}{4}} \| u_0 \|_{L^1(\tilde{\Omega})} + e^{-dt} \| u_0 \|_{H^1(\tilde{\Omega})} \right\}
\]

(1.6)

for \(t \geq 0 \) and \(0 \leq k + l \leq 1 \), provided that the Reynolds number \(Re = \frac{1}{\nu} \) and Mach number \(Ma = \frac{1}{\gamma} \) are sufficiently small and that \(\rho_s \) is sufficiently close to \(\rho_s \).

To prove (1.6), we consider the Fourier transform of (1.5) in \(x_3 \in \mathbb{R} \) which is written as

\[
\partial_t \hat{u} + \tilde{L}_\xi \hat{u} = 0, \quad \hat{u} \big|_{t=0} = \hat{u}_0,
\]

where \(\xi \in \mathbb{R} \) denotes the dual variable. The operator \(\tilde{L}_\xi \) has different properties of the cases \(|\xi| << 1 \) and \(|\xi| >> 1 \). We thus decompose the semigroup \(e^{-tL} \) into two parts:
\[e^{-tL} = \mathcal{F}^{-1}\left(e^{-i\xi \cdot t} \mid |\xi| \leq 1 \right) + \mathcal{F}^{-1}\left(e^{-i\xi \cdot t} \mid |\xi| > 1 \right), \]
develops the inverse Fourier transform. As for the low frequency part, we take a new approach. A straightforward application of the arguments in [7, 9] seems to yield a more restrictive smallness conditions for the Reynolds and Mach numbers. To overcome this, we combine the arguments in [7, 9] and the energy method in [3]. As in [7, 9], we decompose the low frequency part of the semigroup according to the spectral properties of the linearized operator with zero-frequency. The decay estimate for the \(L^2\) norm is then established with the aid of the energy method in [3] to the decomposed system. Based on the decay estimate for \(L^2\) norm, we obtain the estimate for the \(L^2\) norm of the derivatives. We note that this approach also enables us to improve the decay estimate in [7, 8, Theorem 3.2] which is the one with
\[
\frac{1}{4}k_u^0 L_1(R; L^2(D)) \quad \text{in (1.6)}
\]
replaced by
\[
\frac{1}{4}k_u^0 L_1(R; H^1(D) \times L^2(D))
\]
On the other hand, in the case of the high frequency part, we employ the Fourier transformed version of Matsumura-Nishida’s energy method as in [7, 9].

This paper is organized as follows. In Section 2 we first rewrite the problem into the system of equations in a non-dimensional form and then present the existence of a stationary solution of parallel flow type. We state our main results in Section 3. We derive the decay estimate of the low frequency part in Section 4, and the high frequency part in Section 5.

2 STATIONARY SOLUTION AND FORMULATION OF THE PROBLEM

We first rewrite the problem into the one in the non-dimensional form. We introduce the following non-dimensional variables:

\[
x = \ell \tilde{x}, \quad v = V \tilde{v}, \quad \rho = \rho \tilde{\rho}, \quad t = \frac{\ell}{V} \tilde{t},
\]

\[
P = \rho \tilde{P}, \quad \Phi = \frac{V^2}{\ell} \tilde{\Phi}, \quad g^3 = \frac{V^2}{\ell} \tilde{g}^3,
\]

\[
V = |\tilde{v}^3|_{C^2(D)} = \sum_{k=0}^{3} \sup_{x' \in D} \ell^k |\partial_{x'}^k \tilde{v}^3(x')|, \quad \ell = \left(\int_D dx' \right)^{\frac{1}{2}}.
\]

The problem (1.1)-(1.3) is then transformed into the following non-dimensional problem on \(\tilde{\Omega} = \tilde{D} \times \mathbb{R}\):

\[
\partial_t \tilde{\rho} + \text{div}_x (\tilde{\rho} \tilde{v}) = 0, \quad \tilde{t} > 0,
\]

\[
\tilde{\rho} (\partial_t \tilde{v} + \tilde{v} \cdot \nabla_x \tilde{v}) - \nu \Delta_x \tilde{v} - (\nu + \nu') \nabla_x \tilde{v} + \tilde{P}'(\tilde{p}) \nabla_x \tilde{p} = \tilde{g},
\]

\[
|\tilde{v}|_{\partial \tilde{D}} = 0,
\]

\[
(\tilde{\rho}, \tilde{v}) \big|_{\tilde{z}=0} = (\tilde{\rho}_0, \tilde{v}_0).
\]

Here \(\tilde{D}\) is a bounded and connected domain in \(\mathbb{R}^2\); \(\tilde{g} = \frac{T}{V} (\partial_{x_1} \tilde{\Phi}, \partial_{x_2} \tilde{\Phi}, \tilde{g}^3)\); and \(\nu\) and \(\nu'\) are non-dimensional parameters:

\[
\nu = \frac{\mu}{\rho \ell V}, \quad \nu' = \frac{\mu'}{\rho \ell V}.
\]
We also introduce a parameter γ:

$$\gamma = \sqrt{P'(1)} = \sqrt{\frac{P'(\rho_s)}{\rho_s}}.$$

In what follows, for simplicity, we omit tilde of $\tilde{x}, \tilde{t}, \tilde{v}, \tilde{\rho}, \tilde{g}, \tilde{P}, \tilde{\Phi}, \tilde{D}$ and $\tilde{\Omega}$ and write them as $x, t, v, \rho, g, P, \Phi, D$ and Ω.

We next introduce some notation which will be used throughout the paper. For a domain X and $1 \leq p \leq \infty$ we denote by $L^p(X)$ the usual Lebesgue space on X and its norm is denoted by $\| \cdot \|_{L^p(X)}$. Let m be a nonnegative integer. $H^m(X)$ denotes the m th order Sobolev space on X with norm $\| \cdot \|_{H^m(X)}$. $C^m_0(X)$ stands for the set of all C^m functions which have compact support in X. We denote by $H^m_0(X)$ the completion of $C^m_0(X)$ in $H^m(X)$.

We simply denote by $L^p(X)$ (resp., $H^m(X)$) the set of all vector fields $w = T(w^1, w^2, w^3)$ on X and its norm is denoted by $\| \cdot \|_{L^p(X)}$ (resp., $\| \cdot \|_{H^m(X)}$). For $u = T(\phi, w)$ with $\phi \in H^k(X)$ and $w = T(w^1, w^2, w^3) \in H^m(X)$, we define $\|u\|_{H^k(X) \times H^m(X)}$ by $\|u\|_{H^k(X) \times H^m(X)} = \|\phi\|_{H^k(X)} + \|w\|_{H^m(X)}$.

In case $X = \Omega$ we abbreviate $L^p(\Omega)$ (resp., $H^m(\Omega)$) as L^p (resp., H^m). In particular, the norm $\| \cdot \|_{L^p(\Omega)} = \| \cdot \|_{L^p}$.

In case $X = D$ we denote the norm of $L^p(D)$ by $| \cdot |_{L^p}$. The norm of $H^m(D)$ is denoted by $| \cdot |_{H^m}$, respectively. The inner product of $L^2(D)$ is denoted by

$$(f, g) = \int_D f(x') \overline{g(x')} dx', \quad f, g \in L^2(D).$$

Here \overline{g} denotes the complex conjugate of g. For $u_j = T(\phi_j, w_j)$ ($j = 1, 2$), we also define a weighted inner product $\langle u_1, u_2 \rangle$ by

$$\langle u_1, u_2 \rangle = \frac{1}{\tau^2} \int_D \phi_1 \overline{\phi_2} \frac{P'(\rho_s)}{\rho_s(x')} dx' + \int_D w_1 \cdot \overline{w_2} \rho_s dx',$$

where $\rho_s = \rho_s(x')$ is the density of the parallel flow u_s. As will be seen in Proposition 2.1 below, $\frac{P'(\rho_s(x'))}{\rho_s(x')}$ is strictly positive in D.

For $f \in L^1(D)$ we denote the mean value of f in D by $\langle f \rangle$:

$$\langle f \rangle = (f, 1) = \int_D f dx'.$$

For $u = T(\phi, w) \in L^1(D)$ with $w = T(w^1, w^2, w^3)$ we define $\langle u \rangle$ by

$$\langle u \rangle = \langle \phi \rangle + \langle w_1 \rangle + \langle w_2 \rangle + \langle w_3 \rangle.$$

We often write $x \in \Omega$ as

$$x = T(x', x_3), \quad x' = T(x_1, x_2) \in D.$$

Partial derivatives of a function u in x, x', x_3 and t are denoted by $\partial_x u, \partial_{x'} u, \partial_{x_3} u$ and $\partial_t u$. We also write higher order partial derivatives of u in x as $\partial^k x u = (\partial^k_x u; |\alpha| = k)$.

5
We denote the $n \times n$ identity matrix by I_n. We define 4×4 diagonal matrices Q_0, \tilde{Q}, Q' and Q_3 by

$$
Q_0 = \text{diag}(1, 0, 0, 0), \quad \tilde{Q} = \text{diag}(0, 1, 1, 1),
Q' = \text{diag}(0, 1, 1, 0), \quad Q_3 = \text{diag}(0, 0, 0, 1).
$$

We then have, for $u = T(\phi, w)$ with $w = T(w^1, w^2, w^3)$

$$
Q_0u = \begin{pmatrix} \phi \\ 0 \end{pmatrix}, \quad \tilde{Q}u = \begin{pmatrix} 0 \\ w^1 \\ 0 \end{pmatrix}, \quad Q'u = \begin{pmatrix} 0 \\ w^2 \\ 0 \end{pmatrix}, \quad Q_3u = \begin{pmatrix} 0 \\ 0 \\ 0 \\ w^3 \end{pmatrix}.
$$

For a function $f = f(x_3)$ ($x_3 \in \mathbb{R}$), we denote its Fourier transform by \hat{f} or $\mathcal{F}[f]$:

$$
\hat{f}(\xi) = \mathcal{F}[f]\langle \xi \rangle = \int_\mathbb{R} f(x_3)e^{-i\xi x_3}dx_3, \quad \xi \in \mathbb{R}.
$$

The inverse Fourier transform is denoted by \mathcal{F}^{-1}:

$$
\mathcal{F}^{-1}[f](x_3) = (2\pi)^{-1} \int_\mathbb{R} f(\xi)e^{i\xi x_3}d\xi, \quad x_3 \in \mathbb{R}.
$$

Let us state the existence of a stationary solution of Poiseuille flow.

Proposition 2.1. If $\Phi \in C^3(D)$ and $g^3 \in H^3(D)$, then (2.1)-(2.3) has a stationary solution $u_s = T(\rho_s, v_s) \in C^3(D)$; ρ_s is determined by

$$
\left\{\begin{array}{l}
\text{Const.} - \Phi(x') = \int_1^{\rho_s(x')} \frac{\rho'()}{\eta}d\eta, \\
\int_D \rho_s dx' = 1, \rho_1 < \rho_s(x') < \rho_2 \quad \rho_1 < 1 < \rho_2,
\end{array}\right.
$$

and v_s is a function of the form $v_s = T(0, 0, v^3_s)$ with $v^3_s = v^3_s(x')$ being the solution of

$$
\left\{\begin{array}{l}
-\Delta'v^3_s = \frac{1}{\gamma} \rho_s g^3, \\
v^3_s|_{\partial D} = 0.
\end{array}\right.
$$

Furthermore, $u_s = T(\rho_s, v_s)$ satisfies the estimates:

$$
|\rho_s(x') - 1|_{C^3} \leq C|\Phi|_{C^3}(1 + |\Phi|_{C^3})^3, \\
|v^3_s|_{C^3} \leq C|v^3_s|_{H^5} \leq C|\Phi|_{C^3}(1 + |\Phi|_{C^3})^3|g^3|_{H^3}.
$$

Proposition 2.1 can be proved in a similarly manner to the proof of Matsumura-Nishida [10, Lemma 2.1]. We omit the proof.

From now on we simply denote $\nu + \nu'$ by $\tilde{\nu}$:

$$
\tilde{\nu} = \nu + \nu'.
$$
Let us consider the linearized problem, i.e., problem (2.5)-(2.8) with "f" being a source term. Setting \(\rho = \rho_s + \gamma^{-2} \phi \) and \(v = v_s + w \) in (2.1)-(2.4), we arrive at the initial boundary value problem for the disturbance \(u = \theta'(\phi, w) \) that is written as follows:

\[
\begin{align*}
\partial_t \phi + v_s^2 \partial_{x_3} \phi + \gamma^2 \text{div}(\rho_s w) &= f^0(\phi, w), \quad (2.5) \\
\partial_t w - \frac{\nu}{\rho_s} \Delta w - \frac{\nu}{\rho_s} \nabla \text{div} w + \nabla \left(\frac{P'(\rho_s) \phi}{\rho_s} \right) + \frac{\nu}{\gamma^2 \rho_s} \Delta' v_s^2 \phi 3 + v_s^2 \partial_{x_3} w + (w' \cdot \nabla v_s^3) e_3 &= f(\phi, w), \quad (2.6) \\
\end{align*}
\]

Here \(e^3 = \theta'(0, 0, 1) \in \mathbb{R} \), \(\nabla' = \nabla(\partial_{x_1}, \partial_{x_2}) \) and \(\Delta' = \partial^2_{x_1} + \partial^2_{x_2} \):

\[
f(\phi, w) = -w \cdot \nabla w + \frac{\nu \phi}{\gamma(\rho_s + \gamma^2 \rho_s)} \left(-\Delta w + \frac{1}{\gamma^2 \rho_s} \Delta' v_s^2 \phi\right) - \frac{\nu \phi}{\gamma^2 \rho_s} \nabla \text{div} w
\]

and

\[
\begin{align*}
\theta'(\rho_s, \phi, \partial_{x'} \phi) &= \frac{\phi^3}{\gamma^2(\rho_s + \gamma^2 \rho_s)} \nabla P(\rho_s) - \frac{1}{\gamma^2 \rho_s} \nabla \left(\phi^3 P(\rho_s, \phi) \right) \\
&+ \frac{\phi^2}{\gamma^2 \rho_s} \nabla \left(\frac{P'(\rho_s) \phi^2}{\gamma^2 \rho_s} \right) + \frac{1}{\gamma^2 \rho_s} \phi^3 P(\rho_s, \phi) \\
&- \frac{\phi^2}{\gamma^2(\rho_s + \gamma^2 \rho_s)} \nabla \left(\frac{1}{\gamma} P' \rho_s \phi + \frac{1}{\gamma^2} P''(\rho_s) \phi^2 + \frac{1}{\gamma^3} \phi^3 P(\rho_s, \phi) \right),
\end{align*}
\]

with

\[
\theta'(\rho_s, \phi) = \int_0^1 (1 - \theta)^2 P''(\rho_s + \theta \gamma^{-2} \phi) d\theta.
\]

Our main concern in this paper is decay estimates of solutions to the linearized problem, i.e., problem (2.5)-(2.8) with \(f^0(\phi, w) = 0 \) and \(f(\phi, w) = 0 \).

3 MAIN RESULTS

Let us consider the linearized problem

\[
\partial_t u + Lu = 0, \quad u = T(\phi, w), \quad w \mid_{\partial D} = 0, \quad u \mid_{t=0} = u_0.
\]

Here \(L \) is the operator on \(L^2(\Omega) \) defined by

\[
L = \left(\begin{array}{cc}
v_s \cdot \nabla & \gamma^2 \text{div}(\rho_s) \\
\nabla \left(\frac{P'(\rho_s)}{\gamma \rho_s} \right) & -\frac{\nu}{\rho_s} \Delta I_3 - \frac{\nu + \nu'}{\rho_s} \nabla \text{div} + v_s \cdot \nabla \\
\end{array} \right) + \left(\begin{array}{cc}
0 & 0 \\
\frac{\nu}{\gamma^2 \rho_s} \Delta' v_s^3 & e_3 \otimes (\nabla v_s^3) \\
\end{array} \right)
\]

\[
:= L_1 + L_2
\]
with domain
\[D(L) = \{ u = T(\phi, w) \in L^2(\Omega); \ w \in H_0^1(\Omega), \ Lu \in L^2(\Omega) \}. \]

Here, for \(a = T(a_1, a_2, a_3) \) and \(b = T(b_1, b_2, b_3) \), we denote the \(3 \times 3 \) matrix \((a_ib_j) \) by \(a \otimes b \).

In a similar manner to that in [3], one can show that \(-L_1\) generates a \(C_0\)-semigroup on \(L^2(\Omega)\). Since \(\|L_2u\| \leq C\|u\| \), it follows from the standard perturbation theory that \(-L\) generates a \(C_0\)-semigroup \(e^{-tL} \) on \(L^2(\Omega)\). It is not difficult to prove that if \(u_0 \in H^1(\Omega) \times H_0^1(\Omega) \), then
\[
\begin{align*}
 u(t) = & e^{-tL}u_0 \in C([0, T]; H^1(\Omega) \times H_0^1(\Omega)), \\
 Q_0e^{-tL}u_0 \in & H^1(0, T; L^2(\Omega)), \\
 \tilde{Q}e^{-tL}u_0 \in & L^2(0, T; H^2(\Omega)) \cap H^1(0, T; L^2(\Omega))
\end{align*}
\]
for all \(T > 0 \).

The main results of this paper is stated as follows.

Theorem 3.1. Suppose that \(u_0 = T(\phi_0, w_0) \in (H^1(\Omega) \times H_0^1(\Omega)) \cap L^1(\Omega) \). There exist positive constants \(\nu_0, \gamma_0 \) and \(\omega_0 \) such that if \(\nu \geq \nu_0, \ \frac{\nu^2}{2\nu + \eta} \geq \gamma_0 \) and \(\omega = \|\rho_s - 1\|_{C^3} \leq \omega_0 \), then there holds the estimate
\[
\|\partial_{x_3}^k \partial_{t}^l e^{-tL}u_0\|_{L^2(\Omega)} \leq C\{(1 + t)^{-\frac{1}{4} - \frac{l}{2}} \|u_0\|_{L^1(\mathbb{R}, L^2(D))} + e^{-dt}\|u_0\|_{H^1(\Omega)}\}
\]
for \(t \geq 0 \) and \(0 \leq k + l \leq 1 \) with positive constants \(C \) and \(d \).

To prove Theorem 3.1, we consider the Fourier transform of (3.1) in \(x_3 \) variable which is written as
\[
\begin{align*}
 \partial_t \hat{\phi} + i\xi \psi_3 \hat{\phi} + \gamma_0 \nabla' \cdot (\rho_s \hat{\psi}') + \gamma_0 i\xi \rho_s \hat{\psi}' &= 0, \tag{3.3} \\
 \partial_t \hat{\psi} - \frac{\mu}{\rho_s}(\Delta' - \xi^2) \hat{\psi} - \frac{\mu}{\rho_s} \nabla'(\nabla' \cdot \hat{\psi} + i\xi \hat{\psi}' + \nabla' (\frac{P'(\rho_s)}{\gamma \rho_s}) \hat{\phi}) + i\xi \psi_3 \hat{\psi}' &= 0, \tag{3.4} \\
 \partial_t \hat{\psi}' - \frac{\mu}{\rho_s}(\Delta' - \xi^2) \hat{\psi}' - \frac{\mu}{\rho_s} i\xi (\nabla' \cdot \hat{\psi} + i\xi \hat{\psi}' + i\xi (\frac{P'(\rho_s)}{\gamma \rho_s}) \hat{\phi}) + i\xi \psi_3 \hat{\psi}' &= 0, \tag{3.5} \\
 \hat{\psi} \big|_{\partial D} &= 0 \tag{3.6}
\end{align*}
\]
for \(t > 0 \), and
\[
T(\hat{\phi}, \hat{\psi}) \mid_{t=0} = T(\hat{\phi}_0, \hat{\psi}_0) = \hat{u}_0. \tag{3.7}
\]
We thus arrive at the following problem
\[
\frac{d}{dt} \hat{u} + \tilde{L}_\xi \hat{u} = 0, \quad \hat{u} \mid_{t=0} = \hat{u}_0 \tag{3.8}
\]
with a parameter \(\xi \in \mathbb{R} \). Here \(\hat{u} = T(\hat{\phi}(x', t), \hat{\psi}(x', t)) \in D(\tilde{L}_\xi) \) \((x' \in D, \ t > 0) \), \(\hat{u}_0 \in H^1(D) \times H_0^1(D) \), and \(\tilde{L}_\xi \) is the operator on \(L^2(D) \) of the form
\[
\tilde{L}_\xi = \tilde{A}_\xi + \tilde{B}_\xi + \tilde{C}_0,
\]
where \(\tilde{A}_\xi \) is a \(3 \times 3 \) matrix with domain
\[
D(L) = \{ u = T(\hat{\phi}, \hat{\psi}) \in L^2(\Omega); \ \hat{\phi}, \ \hat{\psi} \in H^1(D), \ \hat{\psi} \mid_{\partial D} = 0 \}. \tag{3.10}
\]
where
\[
\hat{A}_\xi = \begin{pmatrix} 0 & -\nu \rho_s (\Delta' - |\xi|^2) & 0 \\ -\nu \rho_s (\Delta' - |\xi|^2) & 0 & -i \nu \rho_s \xi \nabla' \\ 0 & -i \nu \rho_s \xi \nabla' & 0 \end{pmatrix},
\]

\[
\hat{B}_\xi = \begin{pmatrix} i \xi v_3' & \gamma^2 \nabla'(\rho_s) & i \gamma^2 \rho_s \xi \\ \nabla' \left(\frac{P(\rho_s)}{\gamma^2 \rho_s} \right) & i \xi v_3 I_2 & 0 \\ i \xi P(\rho_s) & 0 & i \xi v_3' \end{pmatrix},
\]

\[
\hat{C}_0 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \left(\frac{\nu \gamma^2}{\gamma^2 \rho_s} \right) D' v_3' & T(\nabla' v_3') & 0 \end{pmatrix}
\]

with domain of definition

\[
D(\hat{L}_\xi) = \{ \hat{u} = T(\hat{\phi}, \hat{w}) \in L^2(D); \hat{w} \in H_0^1(D), \hat{L}_\xi \hat{u} \in L^2(D) \}.
\]

Note that \(D(\hat{L}_\xi) = D(\hat{L}_0) \) for all \(\xi \in \mathbb{R} \), where \(\hat{L}_0 = \hat{L}_\xi |_{\xi=0} \).

As in the case of \(L \), following Iooss-Padula [3], one can show that \(\hat{L}_\xi \) generate a \(C_0 \)-semigroup on \(L^2(D) \). Furthermore if \(\hat{u}_0 \in H^1(D) \times H_0^1(D) \), then

\[
e^{-t \hat{L}_\xi} \hat{u}_0 \in C([0, T]; H^1(D) \times H_0^1(D)),
\]

\[
Q_0 e^{-t \hat{L}_\xi} \hat{u}_0 \in H^1(0, T; H^1(D)),
\]

\[
\tilde{Q} e^{-t \hat{L}_\xi} \hat{u}_0 \in L^2(0, T; H^2(D)) \cap H^1(0, T; L^2(D))
\]

for any \(T > 0 \).

To prove Theorem 3.1 we decompose \(e^{-tL}u_0 \) in the following way. We define \(\chi(\cdot)(\xi) \) and \(\chi(\cdot)(\xi) \) by \(\chi^{(R)}(\xi) = 1 \) if \(|\xi| \leq R \), \(\chi^{(R)}(\xi) = 0 \) if \(|\xi| > R \), and \(\chi^{(\infty)}(\xi) = 1 - \chi^{(1)}(\xi) \).

We decompose \(e^{-tL}u_0 \) as

\[
e^{-tL}u_0 = U_1(t)u_0 + U_\infty(t)u_0,
\]

where

\[
U_j(t)u_0 = \mathcal{F}^{-1} \left[\chi^{(j)} e^{-tL} \hat{u}_0 \right], \quad j = 1, \infty.
\]

We can then obtain the following decay estimates for \(U_1(t)u_0 \) and \(U_\infty(t)u_0 \).

Theorem 3.2. There exist positive constants \(\nu_0, \gamma_0, \omega_0 \) and \(d \) such that if \(\nu \geq \nu_0, \frac{\omega^2}{\nu + \rho_s^2} \geq \gamma_0 \) and \(\omega = ||\rho_s - 1||_{C^2} < \omega_0 \), then for any \(l = 0, 1, \cdots \), there exists a positive constant \(C = C(l) \) such that the estimates

\[
||\partial_{x_3}^l U_1(t)u_0||_{L^2} \leq C(1 + t)^{-l/4 - l/2} ||u_0||_{L^1(R; L^2(D))},
\]

\[
||\partial_x^r \partial_{x_3}^l U_1(t)u_0||_{L^2} \leq C \left\{ (1 + t)^{-l/4 - l/2} ||u_0||_{L^1(R; L^2(D))} + e^{-dt} \left(||u_0||_{L^2} + ||\partial_{x^l} u_0||_{L^2} \right) \right\}
\]

hold for \(t \geq 0 \).
Theorem 3.3. There exist positive constants $\nu_0, \gamma_0, \omega_0$ and d such that if $\nu \geq \nu_0$, $\gamma^2 \nu \geq \gamma_0^2$ and $\omega = \|\rho_s - 1\|_{C^3} < \omega_0$, then the estimate
\[
\|U_{\infty}(t)u_0\|_{H^1} \leq Ce^{-dt}\|u_0\|_{H^1}
\]
holds for $t \geq 0$ with a positive constant C.

Theorem 3.1 follows from Theorem 3.2 and Theorem 3.3. In Section 4 we will prove Theorem 3.2 and in Section 5 we will give an outline of the proof of Theorem 3.3.

4 DECAY ESTIMATE OF THE LOW FREQUENCY PART

In this section we give a proof of Theorem 3.2. Theorem 3.2 is a consequence of Proposition 4.12 and Proposition 4.20 below.

For simplicity we omit $\hat{u}, \hat{\phi}$ and \hat{w} in (3.3)-(3.8). In what follows we set
\[
\omega = \|\rho_s - 1\|_{C^3}.
\]

To prove Theorem 3.2 we decompose $u(t)$ based on a spectral property of \hat{L}_ξ with $\xi = 0$, namely, \hat{L}_0.

We introduce the adjoint operator \hat{L}_ξ^* of \hat{L}_ξ with the weighted inner product $\langle \cdot, \cdot \rangle$. We define \hat{L}_ξ^* by
\[
\hat{L}_\xi^* = \hat{A}_\xi^* + \hat{B}_\xi^* + \hat{C}_0^*
\]
with domain of definition
\[
D(\hat{L}_\xi^*) = \{u = T(\phi, w) \in L^2(D); w \in H^1_0(D), \hat{L}_\xi^* u \in L^2(D)\},
\]
where
\[
\hat{A}_\xi^* = \hat{A}_\xi, \quad \hat{B}_\xi^* = -\hat{B}_\xi
\]
and
\[
\hat{C}_0^* = \begin{pmatrix}
0 & 0 & \gamma^2 \nu \Delta \omega_s^3 \\
0 & 0 & \nabla^2 \omega_s^3 \\
0 & 0 & 0
\end{pmatrix}.
\]

Note that $D(\hat{L}_\xi) = D(\hat{L}_\xi^*)$ for any $\xi \in \mathbb{R}$. It follows that
\[
\langle \hat{A}_\xi u, v \rangle = \langle u, \hat{A}_\xi^* v \rangle = \langle u, \hat{A}_\xi v \rangle,
\]
\[
\langle \hat{B}_\xi u, v \rangle = \langle u, \hat{B}_\xi^* v \rangle = -\langle u, \hat{B}_\xi v \rangle,
\]
\[
\langle \hat{C}_0 u, v \rangle = \langle u, \hat{C}_0^* v \rangle
\]
and
\[
\langle \hat{L}_\xi u, v \rangle = \langle u, \hat{L}_\xi^* v \rangle
\]
for $u, v \in D(\hat{L}_\gamma)$.

We begin with a lemma on the zero-eigenvalue of \hat{L}_0 and \hat{L}_0^*.

Lemma 4.1. (i) There exists a constant $\omega_0 > 0$ such that if $\omega \leq \omega_0$, then $\lambda = 0$ is a simple eigenvalue of \hat{L}_0 and \hat{L}_0^*.

(ii) The eigenspaces for $\lambda = 0$ of \hat{L}_0 and \hat{L}_0^* are spanned by $u^{(0)}$ and $u^{(0)*}$, respectively, where

$$u^{(0)} = T(\phi^{(0)}, w^{(0)}), \quad w^{(0)} = T(0, 0, w^{(0), 3})$$

and

$$u^{(0)*} = T(\phi^{(0)*}, 0).$$

Here

$$\phi^{(0)}(x') = \alpha_0 \frac{\gamma^2 \rho_s(x')}{P_0(\rho_s(x'))}, \quad \alpha_0 = \left(\int_D \frac{\gamma^2 \rho_s(x')}{P_0(\rho_s(x'))} dx' \right)^{-1};$$

and $w^{(0), 3}$ is the solution of the following problem

$$\begin{cases}
-\Delta' w^{(0), 3} = -\frac{1}{\gamma^2} \Delta u^3 \phi^{(0)}, \\
w^{(0), 3} |_{\partial D} = 0;
\end{cases}$$

and

$$\phi^{(0)*} = \frac{\gamma^2}{\alpha_0} \phi^{(0)}(x').$$

(iii) The eigenprojections $\hat{\Pi}^{(0)}$ and $\hat{\Pi}^{(0)*}$ for $\lambda = 0$ of \hat{L}_0 and \hat{L}_0^* are given by

$$\hat{\Pi}^{(0)} u = \langle u, u^{(0)*} \rangle u^{(0)} = \langle Q_0 u \rangle u^{(0)},$$

$$\hat{\Pi}^{(0)*} u = \langle u, u^{(0)} \rangle u^{(0)*}$$

for $u = T(\phi, w)$, respectively.

(iv) Let $u^{(0)}$ be written as $u^{(0)} = u^{(0)}_0 + u^{(0)}_1$, where

$$u^{(0)}_0 = T(\phi^{(0)}, 0), \quad u^{(0)}_1 = T(0, w^{(0)}).$$

Then

$$u^{(0)*} = \frac{\gamma^2}{\alpha_0} u^{(0)}_0$$

and

$$\langle u, u^{(0)} \rangle = \frac{2 \alpha_0}{\gamma^2} \langle \phi \rangle + \left(w^3, w^{(0), 3} \rho_s \right)$$

for $u = T(\phi, w^1, w^2, w^3)$.

Remark 4.2. $\phi^{(0)} = O(1)$, $\alpha_0 = O(1)$ and $w^{(0), 3} = O\left(\frac{1}{\gamma^2} \right)$ as $\gamma^2 \to \infty$.

11
Proof. Let \(\hat{L}_0 u = 0 \) for \(u = T(\phi, w', w^3) \in D(\hat{L}_0) \). Then

\[
\begin{aligned}
\gamma^2 \nabla' \cdot (\rho_s w') &= 0, \\
-\frac{\mu}{\rho_s} \Delta' w' - \frac{\nu}{\rho_s} \nabla' \nabla' \cdot w' + \nabla' \left(\frac{P'(\rho_s)}{\gamma^2 \rho_s} \phi \right) &= 0, \\
-\frac{\mu}{\rho_s} \Delta' w^3 + \frac{\nu}{\gamma^2 \rho_s} \Delta' v^3 \phi &= w' \cdot \nabla' v^3 = 0, \\
w \big|_{\partial D} &= 0.
\end{aligned}
\]

(4.1)

We take the weighted inner product of (4.1) with \(T(\phi, w', 0) \) to get

\[
\nu |\nabla' w'|^2 + \nu |\nabla' \cdot w'|^2 = 0.
\]

Since \(w' \in H^1_0(D) \), we have \(w' = 0 \). It then follows that

\[
\begin{aligned}
\nabla' \left(\frac{P'(\rho_s)}{\gamma^2 \rho_s} \phi \right) &= 0, \\
-\Delta' w^3 &= -\frac{1}{\gamma^2 \rho_s} \Delta' v^3 \phi, \\
w^3 \big|_{\partial D} &= 0.
\end{aligned}
\]

This implies that \(\frac{P'(\rho_s)}{\gamma^2 \rho_s} \phi \) is a constant since \(D \) is connected, and we conclude that \(\text{Ker}(\hat{L}_0) = \text{span}\{u(0)\} \). We set this constant \(\alpha_0 = (\int_D \frac{\gamma^2 \rho_s}{P'(\rho_s)} \, dx')^{-1} \). Note that \(\int_D \phi(0) \, dx' = 1 \).

Let \(\hat{L}_0^* u = 0 \) for \(u = T(\phi, w', w^3) \). Then

\[
\begin{aligned}
-\gamma^2 \nabla' \cdot (\rho_s w') + \frac{\gamma^2 \nu}{P'(\rho_s)} \Delta' v^3 w^3 &= 0, \\
-\frac{\mu}{\rho_s} \Delta' w' - \frac{\nu}{\rho_s} \nabla' \nabla' \cdot w' - \nabla' \left(\frac{P'(\rho_s)}{\gamma^2 \rho_s} \phi \right) + w^3 \nabla' v^3 &= 0, \\
-\frac{\mu}{\rho_s} \Delta' w^3 &= 0, \\
w \big|_{\partial D} &= 0.
\end{aligned}
\]

The third equation, together with \(w^3 \big|_{\partial D} = 0 \), implies that \(w^3 = 0 \), and hence,

\[
\begin{aligned}
-\gamma^2 \nabla' \cdot (\rho_s w') &= 0, \\
-\frac{\mu}{\rho_s} \Delta' w' - \frac{\nu}{\rho_s} \nabla' \nabla' \cdot w' - \nabla' \left(\frac{P'(\rho_s)}{\gamma^2 \rho_s} \phi \right) &= 0, \\
w' \big|_{\partial D} &= 0.
\end{aligned}
\]

Similarly to the case of \(\hat{L}_0 \), one can show that \(w' = 0 \) and \(\frac{P'(\rho_s)}{\gamma^2 \rho_s} \phi \) is a constant. We set \(\phi^{(0)*} = \frac{\gamma^2}{\alpha_0} \phi(0)(x') \). Note that \(\int_D \phi^{(0)*} \frac{P'(\rho_s)}{\gamma^2 \rho_s} \, dx' = 1 \). We thus proved (i), (ii) and (iii) except the simplicity of \(\lambda = 0 \). The assertion (iv) can be verified by direct computations. It remains to prove the simplicity of \(\lambda = 0 \). Since we have already proved that \(\text{Ker}(\hat{L}_0) = \text{span}\{u(0)\} \) and \(\text{Ker}(\hat{L}_0^*) = \text{span}\{u^{(0)*}\} \), if we would prove the following lemma, then the proof of the simplicity of \(\lambda = 0 \) would be complete.

Lemma 4.3. There exists a constant \(\omega_0 > 0 \) such that if \(\omega \leq \omega_0 \), then there hold that

\[
L^2(D) = \text{Ker}(\hat{L}_0) \oplus R(\hat{L}_0), \quad L^2(D) = \text{Ker}(\hat{L}_0^*) \oplus R(\hat{L}_0^*).
\]
To prove Lemma 4.3, we show the following proposition.

Proposition 4.4. There exists a constant $\omega_0 > 0$ such that if $\omega \leq \omega_0$, then for any $f = T(f^0, g) = T(f^0, g', g^3) \in L^2(D)$ with $\langle f^0 \rangle = 0$, there is a unique solution $u = T(\phi, w) \in D(\hat{L}_0)$ of the following problem:

\[
\begin{cases}
\hat{L}_0 u = f, \\
\langle \phi \rangle = 0.
\end{cases}
\] (4.2)

Proof. Let us prove that if $\langle f^0 \rangle = 0$, then (4.2) has a unique solution $u = T(\phi, w) \in L^2(D) \times H^1_0(D)$ with $\langle \phi \rangle = 0$. The problem (4.2) is rewritten as the following system:

\[
\begin{align*}
\nabla' \cdot w' &= F[w'; f^0], \\
-\nu \Delta ' w' + \nabla' \phi &= G'[\phi, w'; f^0, g'], \\
w' |_{\partial D} &= 0, \\
\langle \phi \rangle &= 0
\end{align*}
\] (4.3)

and

\[
\begin{align*}
-\nu \Delta' w^3 &= G^3[\phi, w'; g^3], \\
w^3 |_{\partial D} &= 0
\end{align*}
\] (4.4)

where

\[
F[w'; f^0] = \nabla' \cdot ((1 - \rho_s)w') + \frac{1}{\sigma_s} f^0,
\]

\[
G'[\phi, w'; f^0, g'] = \Delta' F[w'; f^0] + \nabla' ((1 - \rho_s)\phi) + \nabla' \rho_s \phi + \rho_s \nabla' \left(\frac{F'(\rho_s)\phi}{\gamma' \rho_s} \right) + \rho_s g^0,
\]

\[
G^3[\phi, w'; g^3] = -\frac{\nu}{\gamma' \rho_s} \Delta' v^3 \phi - \rho_s w' \cdot \nabla' v^3 - \rho_s g^3.
\]

We define a set X by

\[
X = \{ (p, v') ; p \in L^2(D), v' = T(v^1, v^2) \in H^1_0(D), \langle p \rangle = 0 \}.
\]

We assume that $(\tilde{\phi}, \tilde{w}') \in X$. Let us consider the following problem

\[
\begin{align*}
\nabla' \cdot w' &= F[\tilde{w}'; f^0], \\
-\nu \Delta' w' + \nabla' \phi &= G'[\tilde{\phi}, \tilde{w}'; f^0, g'], \\
w' |_{\partial D} &= 0.
\end{align*}
\] (4.5)

It holds that

\[
F[\tilde{w}'; f^0] \in L^2(D), \quad \langle F[\tilde{w}'; f^0] \rangle = 0,
\]

\[
G'[\tilde{\phi}, \tilde{w}'; f^0, g'] \in H^{-1}(D).
\]
In fact, we see from the Poincaré inequality that
\[
|F(\tilde{w}'; f^0)|_2 \leq |\nabla' \cdot ((1 - \rho_s)\tilde{w}')|_2 + \frac{1}{\gamma} |f^0|_2 \\
\leq \omega |\tilde{w}'|_{H^1} + \frac{1}{\gamma} |f^0|_2 \\
\leq \omega |\nabla'\tilde{w}'|_2 + \frac{1}{\gamma} |f^0|_2,
\]
\[
|G'([\tilde{\phi}, \tilde{w}'; f^0, g^0])|_{H^{-1}} \leq C\{ |\nabla' F(\tilde{w}'; f^0)|_{H^{-1}} + |\nabla'((1 - \rho_s)\tilde{\phi})|_{H^{-1}} \\
+ |\nabla'\rho_s\tilde{\phi}|_{H^{-1}} + |\rho_s\nabla'((1 - \frac{\rho_s}{\gamma^2\rho_c})\tilde{\phi})|_{H^{-1}} + |g'|_{H^{-1}} \} \\
\leq C\{ |F(\tilde{w}'; f^0)|_2 + \omega |\tilde{\phi}|_2 + |g'|_2 \} \\
\leq C\{ \omega (|\tilde{\phi}|_2 + |\nabla'\tilde{w}'|_2) + |g'|_2 \}.
\]
From [12, III.1.4, Theorem 1.4.1], we see that there is a unique solution \((\phi, w') \in X\) of (4.5) and there holds the following estimate
\[
|\tilde{\phi}|_2 + |\nabla'w'|_2 \leq C\{ |F(\tilde{w}'; f^0)|_2 + |G'([\tilde{\phi}, \tilde{w}'; f^0, g^0])|_{H^{-1}} \} \\
\leq C\omega \{ |\tilde{\phi}|_2 + |\nabla'\tilde{w}'|_2 \} + C\{ \frac{1}{\gamma} |f^0|_2 + |g^0|_2 \}. \tag{4.6}
\]
Let us define a map \(\Gamma : X \to X\) by
\[
\Gamma(\tilde{\phi}, \tilde{w}') = (\phi, w') \text{ for } (\tilde{\phi}, \tilde{w}') \in X,
\]
where \((\phi, w') \in X\) is a solution of (4.5). We see from (4.6) that
\[
|\Gamma(\tilde{\phi}, \tilde{w}')|_X \leq C\omega |(\tilde{\phi}, \tilde{w}')|_X + C\{ \frac{1}{\gamma} |f^0|_2 + |g^0|_2 \}.
\]
It then follows that
\[
|\Gamma(\tilde{\phi}_1, \tilde{w}'_1) - \Gamma(\tilde{\phi}_2, \tilde{w}'_2)|_X \leq C\omega |(\tilde{\phi}_1, \tilde{w}'_1) - (\tilde{\phi}_2, \tilde{w}'_2)|_X
\]
for \((\tilde{\phi}_1, \tilde{w}'_1), (\tilde{\phi}_2, \tilde{w}'_2) \in X\). If we take \(\omega\) sufficiently small satisfying \(C\omega < 1\), then \(\Gamma : X \to X\) is a contraction map. This implies that there is a unique \((\phi, w') \in X\) such that \(\Gamma(\phi, w') = (\phi, w')\), i.e., there is a unique solution \((\phi, w') \in X\) of (4.3).

Furthermore, for a solution \((\phi, w') \in X\) of (4.3), since
\[
G^3[\phi, w'; g^3] \in L^2(D),
\]
there is a unique solution \(w^3 \in H^1_0(D)\) of (4.4). Consequently, we have
\[
\hat{L}_0u = f \text{ in the sense of distribution},
\]
where \(f = T(f^0, g^0, g^3) \in L^2(D)\) with \(\langle f^0 \rangle = 0\). Since \(f \in L^2(D)\), it holds that \(\hat{L}_0u \in L^2(D)\). It then follows that
\[
u \in D(\hat{L}_0).
\]
This completes the proof. \qed
Proof of Lemma 4.3 We have already proved that
\[\text{Ker}(\hat{L}^{(0)}) = \hat{\Pi}^{(0)}L^2(D). \]

To prove \(R(\hat{L}_0) = (I - \hat{\Pi}^{(0)})L^2(D) \), we first show that
\[u = T(\phi, w) \in (I - \hat{\Pi}^{(0)})L^2(D) \quad \text{if and only if} \quad \langle \phi \rangle = 0. \] \(\tag{4.7} \)

Let us prove (4.7). We can decompose \(u = T(\phi, w) \) as
\[u = \langle \phi \rangle u^{(0)} + u_1. \]

Here
\[\langle \phi \rangle u^{(0)} \in \Pi^{(0)}L^2(D), \quad u_1 = T(\phi_1, w_1) \in (I - \Pi^{(0)})L^2(D). \]

This implies that if \(\langle \phi \rangle = 0 \), then
\[u = \langle \phi \rangle u^{(0)} + u_1 = u_1 \in (I - \hat{\Pi}^{(0)})L^2(D). \]

On the other hand, if \(u = T(\phi, w) \in (I - \hat{\Pi}^{(0)})L^2(D) \), then there exists \(\tilde{u} = T(\tilde{\phi}, \tilde{w}) \in L^2(D) \) such that
\[u = \tilde{u} - \langle \tilde{\phi} \rangle u^{(0)}. \]

It then follows that
\[\langle \phi \rangle = \langle \tilde{\phi} \rangle - \langle \tilde{\phi} \rangle = 0. \]

We thus conclude that (4.7) holds true.

We next show that \(R(\hat{L}_0) = (I - \hat{\Pi}^{(0)})L^2(D) \). Since \(\langle Q_0 \hat{L}_0 u \rangle = \langle \nabla' \cdot (\rho_s w') \rangle = 0 \), we see from (4.7) that \(\hat{L}_0 u \in (I - \hat{\Pi}^{(0)})L^2(D) \), and, therefore,
\[R(\hat{L}_0) \subset (I - \Pi^{(0)})L^2(D). \]

On the other hand, if \(f = T(f^0, g', g^3) \in (I - \hat{\Pi}^{(0)})L^2(D) \), then it follows from (4.7) that \(\langle f^0 \rangle = 0 \). By Proposition 4.4, there exists a unique solution \(u = T(\phi, w) \in D(\hat{L}_0) \) such that \(\hat{L}_0 u = f \) with \(\langle \phi \rangle = 0 \). This implies that \(f \in R(\hat{L}_0) \), and, thus,
\[(I - \Pi^{(0)})L^2(D) \subset R(\hat{L}_0). \]

Therefore we see that \(R(\hat{L}_0) = (I - \hat{\Pi}^{(0)})L^2(D) \). Consequently, we have
\[L^2(D) = \text{Ker}(\hat{L}_0) \oplus R(\hat{L}_0). \]

Similarly, one can prove that
\[L^2(D) = \text{Ker}(\hat{L}_0^*) \oplus R(\hat{L}_0^*). \]

This completes the proof of Lemma 4.1. \(\Box \)
We are now ready to prove Theorem 3.2. We decompose \(u(t) \) as follows

\[
\begin{align*}
 u(t) &= \sigma(t)u^{(0)} + u_1(t), \\
 \sigma(t) &= \langle Q_0 u(t) \rangle = \langle u(t), u^{(0)*} \rangle, \\
 u_1(t) &= (I - \tilde{\Pi}^{(0)}) u(t).
\end{align*}
\]

The density component of \(u_1 \) is denoted by \(\phi_1 \) and the velocity component is denoted by \(w_1 \), namely,

\[
u_1 = T(\phi_1, w_1).
\]

Note that \(\langle \phi_1 \rangle = 0 \) and \(w_1 |_{\partial D} = 0 \); the latter follows from \(u^{(0)} \in D(\tilde{L}_0) \) which implies that \(w^{(0),3} |_{\partial D} = 0 \).

Remark 4.5. (i) The boundary condition \(w_1 |_{\partial D} = 0 \) implies that the Poincaré inequality holds for \(w_1 : |w_1|_2 \leq C|\partial_x w_1|_2 \).

(ii) The vanishing mean value condition \(\langle \phi_1 \rangle = 0 \) implies that the Poincaré inequality holds for \(\phi_1 : |\phi_1|_2 \leq C|\partial_x \phi_1|_2 \).

We define \(\tilde{M}_\xi \) by

\[
\tilde{M}_\xi = \tilde{L}_\xi - \tilde{L}_0 = \tilde{A}_\xi + \tilde{B}_\xi,
\]

where

\[
\tilde{A}_\xi = \hat{A}_\xi - \hat{A}_0 = \begin{pmatrix} 0 & \frac{-\rho_s}{\rho_s^2} i \xi^2 I_2 & 0 \\ 0 & \frac{-\rho_s}{\rho_s^2} i \xi \nabla' & \frac{-\rho_s^2}{\rho_s} \xi \nabla^2 \end{pmatrix},
\]

\[
\tilde{B}_\xi = \hat{B}_\xi - \hat{B}_0 = \begin{pmatrix} i \xi v_3^2 & 0 & \gamma^2 i \xi \rho_s \\ 0 & i \xi v_2^2 I_2 & 0 \\ i \xi \rho_s (\rho_s \gamma) & 0 & i \xi v_3^2 \end{pmatrix}.
\]

Decomposing \(u(t) \) in (3.8) as \(u(t) = \sigma(t)u^{(0)} + u_1(t) \), we obtain

\[
\frac{d}{dt} (\sigma u^{(0)} + u_1) + \tilde{L}_0 u_1 + \tilde{M}_\xi (\sigma u^{(0)} + u_1) = 0.
\]

Applying \(\Pi^{(0)} \) and \(I - \Pi^{(0)} \) to this equation, we have

\[
\begin{cases}
\frac{d}{dt} \sigma + \langle Q_0 \tilde{M}_\xi (\sigma u^{(0)} + u_1) \rangle = 0, \\
\frac{d}{dt} u_1 + \tilde{L}_0 u_1 + (I - \tilde{\Pi}^{(0)}) \tilde{M}_\xi (\sigma u^{(0)} + u_1) = 0.
\end{cases}
\]

Since \(\tilde{\Pi}^{(0)} \tilde{M}_\xi u = \langle Q_0 \tilde{M}_\xi u \rangle u^{(0)} \) and \(Q_0 \tilde{M}_\xi = Q_0 \tilde{B}_\xi \), we get

\[
\begin{align}
\frac{d}{dt} \sigma + \langle Q_0 \tilde{B}_\xi (\sigma u^{(0)} + u_1) \rangle &= 0, \\
\frac{d}{dt} u_1 + \tilde{L}_\xi u_1 + \tilde{M}_\xi (\sigma u^{(0)} + u_1) - \langle Q_0 \tilde{B}_\xi (\sigma u^{(0)} + u_1) \rangle u^{(0)} &= 0.
\end{align}
\]

\[
\begin{align}
w_1 |_{\partial D} &= 0, & \sigma(0) &= \sigma_0, & u_1(0) &= u_{1,0},
\end{align}
\]

\[
\begin{align}
\text{(4.8)} & \quad \frac{d}{dt} \sigma + \langle Q_0 \tilde{B}_\xi (\sigma u^{(0)} + u_1) \rangle = 0, \\
\text{(4.9)} & \quad \frac{d}{dt} u_1 + \tilde{L}_\xi u_1 + \tilde{M}_\xi (\sigma u^{(0)} + u_1) - \langle Q_0 \tilde{B}_\xi (\sigma u^{(0)} + u_1) \rangle u^{(0)} = 0, \\
\text{(4.10)} & \quad w_1 |_{\partial D} = 0, \quad \sigma(0) = \sigma_0, \quad u_1(0) = u_{1,0}.
\end{align}
\]
where σ_0 and $u_{1,0}$ are given by

$$\sigma_0 = \langle u_0, u^{(0)*} \rangle, \quad u_{1,0} = (I - \hat{\Pi}^{(0)}) u_0.$$

We see from (3.9) that if $u_0 \in H^1(D) \times H_0^1(D)$, then

$$\sigma \in H^1(0, T),$$

$$u_1 \in C([0, T]; H^1(D) \times H_0^1(D)),$$

$$\phi_1 \in H^1(0, T; H^1(D)),$$

$$w_1 \in L^2(0, T; H^2(D)) \cap H^1(0, T; L^2(D))$$

for all $T > 0$.

Lemma 4.6. For $u_1 = T(\phi_1, w_1', w_3^3) \in R(I - \hat{\Pi}^{(0)})$, there hold the estimates:

(i) $|\langle Q_0 \hat{B}_i u^{(0)} \rangle| \leq C|\xi|.$

(ii) $|\langle Q_0 \hat{B}_i u_1 \rangle| \leq C|\xi|(|\phi_1|_2 + \gamma^2|w_1|^2).$

(iii) $|\langle Q_0 \hat{B}_i u_1 \rangle| \leq C(|\xi| |\phi_1|_2 + \gamma^2|\nabla' \cdot w_1 + i\xi w_1|^2 + \gamma^2\omega |w_1'|_2).$

Lemma 4.6 can be proved by direct computations. We omit the proof.

We will employ an energy method to obtain the decay estimate on solutions of (4.8)-(4.10). We write (4.9) as:

$$\begin{cases}
\frac{d}{dt}\phi_1 + i\xi v_3^3 \phi_1 + \gamma^2 \nabla' \cdot (\rho_s w_1') + \gamma^2 i\xi \rho_s w_1^3 \\
+ i\xi v_3^3 \phi(0) + \gamma^2 i\xi \rho_s \sigma w(0),3 - \langle Q_0 \hat{B}_i (\sigma u^{(0)} + u_1) \rangle \phi^{(0)} = 0,
\end{cases}
$$

$$\begin{cases}
\frac{d}{dt}w_1' - \frac{1}{\rho_s} (\Delta' - \xi^2) w_1' - \frac{1}{\rho_s} \nabla' (\nabla' \cdot w_1' + i\xi w_1^3) + \nabla' (\frac{P'(\rho_s)}{\rho_s} \phi_1 + i\xi v_3^3 w_1' \\
- \frac{1}{\rho_s} i\xi \nabla'(w^{(0)},3) = 0,
\end{cases}
$$

$$\begin{cases}
\frac{d}{dt}w_3^3 - \frac{1}{\rho_s} (\Delta' - \xi^2) w_3^3 - \frac{1}{\rho_s} i\xi (\nabla' \cdot w_1' + i\xi w_1^3) + i\xi (\frac{P'(\rho_s)}{\rho_s} \phi_1 + i\xi v_3^3 w_1^3 \\
+ \frac{1}{\gamma^2 \rho_s^2} \Delta' v_3^3 \phi_1 + w_1' \cdot \nabla' v_3^3 + \frac{1}{\rho_s} i\xi \sigma w^{(0),3} + i\xi \alpha_0 \sigma + i\xi v_3^3 \sigma w^{(0),3} - \langle Q_0 \hat{B}_i (\sigma u^{(0)} + u_1) \rangle w^{(0),3} = 0.
\end{cases}
$$

Before proceeding further we introduce some notations. For $u = T(\phi, w)$ we define $E_0[u]$ by

$$E_0[u] = \frac{1}{\gamma^2} \left| \frac{P'(\rho_s)}{\rho_s} \phi \right|^2 + \frac{1}{\sqrt{\rho_s}} |w|^2.$$

For $w = T(w', w^3)$ with $w' = T(w^1, w^2)$ we define $\tilde{D}_\xi[w]$ by

$$\tilde{D}_\xi[w] = \nu(|\nabla' w|^2 + |\xi|^2 |w|^2) + \tilde{\nu} |\nabla' \cdot w' + i\xi w^3|^2.$$

For ϕ we define $\dot{\phi}$ by

$$\dot{\phi} = \frac{d}{dt} \phi + i\xi v_3^3 \phi.$$
Proposition 4.7. There exists a constant $\nu_0 > 0$ such that if $\nu \geq \nu_0$, then there hold the estimates:

$$\frac{1}{2} \frac{d}{dt} \left(\frac{a_0}{\gamma^2} |\sigma|^2 + E_0[u_1] \right) + \frac{1}{2} \tilde{D}_\xi[w_1] \leq C \left\{ \left(\frac{1}{\gamma^2} + \frac{\nu + \varphi}{\gamma} \right) |\xi|^2 |\sigma|^2 + \left(\frac{1}{\gamma^2} + \frac{\nu + \varphi}{\gamma} \right) |\phi_1|^2 \right\}, \quad (4.11)$$

$$\frac{\nu + \varphi}{\gamma} |\phi_1|^2 \leq C \left\{ \frac{\nu + \varphi}{\gamma} |\xi|^2 |\sigma|^2 + \frac{\nu + \varphi}{\gamma} |\xi|^2 |\phi_1|^2 + \left(1 + \frac{\nu + \varphi}{\gamma^2} \right) \tilde{D}_\xi[w_1] \right\}. \quad (4.12)$$

Proof. Multiplying (4.8) by $\sigma(t)$ and taking real part of the resulting equation, we have

$$\frac{1}{2} \frac{d}{dt} |\sigma|^2 + \text{Re} \{ \langle Q_0 \tilde{B}_\xi (\sigma u^{(0)} + u_1) \rangle \sigma \} = 0. \quad (4.13)$$

Since $\tilde{B}_\xi^* = -\tilde{B}_\xi$ and $u^{(0)*} = \frac{a_0}{\gamma} u_0^{(0)}$, we see that

$$\langle Q_0 \tilde{B}_\xi u_1 \rangle \sigma = \langle \tilde{B}_\xi u_1, \sigma u^{(0)*} \rangle = -\langle u_1, \tilde{B}_\xi (\sigma u^{(0)*}) \rangle = -\frac{\nu + \varphi}{\gamma} \langle u_1, \tilde{B}_\xi (\sigma u_0^{(0)}) \rangle, \quad (4.14)$$

where $u_0^{(0)} = \tilde{t}(\phi^{(0)}, 0)$. On the other hand, since

$$\langle Q_0 \tilde{B}_\xi (\sigma u^{(0)}) \rangle \sigma = i\xi |\sigma|^2 \{ \langle \nu_s^3 \phi_1 \rangle + \langle \nu_s^2 \rho_s \nu_s^1 \rangle \},$$

we have

$$\text{Re} \{ \langle Q_0 \tilde{B}_\xi (\sigma u^{(0)}) \rangle \sigma \} = 0. \quad (4.15)$$

It then follows from (4.13)-(4.15) that

$$\frac{1}{2} \frac{d}{dt} |\sigma|^2 - \frac{\nu + \varphi}{\gamma} \text{Re} \langle u_1, \tilde{B}_\xi (\sigma u_0^{(0)}) \rangle = 0. \quad (4.16)$$

We next take the weighted inner product of (4.9) with u_1. The real part of the resulting equation then gives

$$\frac{1}{2} \frac{d}{dt} E_0[u_1] + \text{Re} \langle \tilde{L}_0 u_1, u_1 \rangle + \text{Re} \langle \tilde{M}_\xi (\sigma u^{(0)} + u_1), u_1 \rangle - \text{Re} \{ \langle Q_0 \tilde{B}_\xi (\sigma u^{(0)} + u_1) \rangle \langle u^{(0)} , u_1 \rangle \} = 0. \quad (4.17)$$

Since $\tilde{B}_\xi^* = -\tilde{B}_\xi$, we see that $\text{Re} \langle \tilde{B}_\xi u_1, u_1 \rangle = 0$. It then follows that

$$\text{Re} \langle \tilde{L}_0 u_1, u_1 \rangle + \text{Re} \langle \tilde{M}_\xi (\sigma u^{(0)} + u_1), u_1 \rangle = \text{Re} \langle \tilde{C}_0 u_1, u_1 \rangle + \text{Re} \langle \tilde{A}_\xi (\sigma u^{(0)}), u_1 \rangle + \text{Re} \langle \tilde{B}_\xi (\sigma u^{(0)}), u_1 \rangle = \text{Re} \langle \tilde{C}_0 u_1, u_1 \rangle + \tilde{D}_\xi[w_1] + \text{Re} \langle \tilde{A}_\xi (\sigma u^{(0)}), u_1 \rangle + \text{Re} \langle \tilde{B}_\xi (\sigma u^{(0)}), u_1 \rangle.$$

This, together with (4.17), gives

$$\frac{1}{2} \frac{d}{dt} E_0[u_1] + \text{Re} \langle \tilde{L}_0 u_1, u_1 \rangle + \text{Re} \langle \tilde{C}_0 u_1, u_1 \rangle + \text{Re} \langle \tilde{A}_\xi (\sigma u^{(0)}), u_1 \rangle + \text{Re} \langle \tilde{B}_\xi (\sigma u^{(0)}), u_1 \rangle + \text{Re} \langle \tilde{B}_\xi (\sigma u^{(0)}), u_1 \rangle = 0. \quad (4.18)$$
We add \(\nu \times (4.16) \) to (4.18), to get
\[
\frac{1}{2} d \left(\frac{\nu}{\gamma} |\sigma|^2 + E_0[u_1] \right) + \tilde{D}_\sigma[w_1] + \text{Re}\langle \tilde{C}_0 u_1, u_1 \rangle + \text{Re}\langle \tilde{A}_\sigma(u^{(0)}), u_1 \rangle \\
+ \text{Re}\langle \tilde{B}_\sigma(u^{(0)}, u_1) \rangle - \text{Re}\{ \langle Q_0 \tilde{B}_\sigma(u^{(0)} + u_1) \rangle, (u^{(0)}, u_1) \} = 0,
\]
(4.19)
where \(u^{(0)}_1 = \tau(0, w^{(0)}) \). Here we used the relation
\[
-\text{Re}\langle u_1, \tilde{B}_\sigma(u^{(0)}_1) \rangle + \text{Re}\langle \tilde{B}_\sigma(u^{(0)}_1), u_1 \rangle = \text{Re}\langle \tilde{B}_\sigma(u^{(0)}_1), u_1 \rangle.
\]
By the Poincaré inequality we have
\[
|\text{Re}\langle \tilde{A}_\sigma(u^{(0)}_1), u_1 \rangle| \leq C(\frac{\nu}{\gamma} |\sigma|^2 |w_1^3|_2 + \frac{\nu}{\gamma} |\sigma||\nabla \cdot w_1^3 + i\xi w_1^3|_2) \\
\leq \frac{1}{8} \tilde{D}_\sigma[w_1] + C\frac{\nu + \nu^2}{\gamma} |\xi|^2 |\sigma|^2,
\]
and
\[
|\text{Re}\langle \tilde{B}_\sigma(u^{(0)}_1), u_1 \rangle| \leq C|\xi||\sigma|\left(\frac{\nu}{\gamma} |\phi_1^3|_2 + \frac{1}{\gamma} |w_1^3|_2\right) \\
\leq C\left(\frac{\nu}{\gamma} + \frac{1}{\gamma^2}\right) |\xi|^2 |\sigma|^2 + \frac{1}{\gamma} |\phi_1^3|_2 + \frac{1}{2} \tilde{D}_\sigma[w_1].
\]
Since \(\langle \phi_1 \rangle = 0 \), there holds that
\[
|\text{Re}\langle u^{(0)}_1, u_1 \rangle| \leq C\frac{1}{\gamma} |w_1^3|_2.
\]
Applying Lemma 4.6 and the Poincaré and Hölder inequalities, we thus have the following estimates:
\[
|\text{Re}\{ \langle Q_0 \tilde{B}_\sigma(u^{(0)}_1) \rangle, (u^{(0)}, u_1) \} | \\
\leq C|\xi|(|\sigma| + |\phi_1^3|_2 + \gamma^2 |w_1^3|_2) \frac{1}{\gamma} |w_1^3|_2 \\
\leq \frac{1}{8} \tilde{D}_\sigma[w_1] + C\left(\frac{\nu + \nu^2}{\gamma} |\xi|^2 |\sigma|^2 + \frac{1}{\gamma} |\phi_1^3|_2 + \frac{1}{2} \tilde{D}_\sigma[w_1] \right),
\]
\[
|\text{Re}\{ \langle \tilde{C}_0 u_1, u_1 \rangle \} | \leq C\left(\frac{\nu}{\gamma} |\phi_1^3|_2 + \frac{1}{2} \tilde{D}_\sigma[w_1] \right).
\]
Therefore we find that there exists a constant \(\nu_0 > 0 \) such that if \(\nu \geq \nu_0 \), then
\[
\frac{1}{2} d \left(\frac{\nu}{\gamma} |\sigma|^2 + E_0[u_1] \right) + \frac{1}{2} \tilde{D}_\sigma[w_1] \leq C\left(\left(\frac{1}{\gamma} + \frac{\nu^2}{\gamma^2}\right) |\xi|^2 |\sigma|^2 + \left(\frac{1}{\gamma^2} + \frac{\nu}{\gamma}\right) |\phi_1^3|_2 \right).
\]
We next estimate \(\dot{\phi}_1 \). By the first equation of (4.9) there holds that
\[
\frac{1}{\gamma} \dot{\phi}_1 = - (\nabla \cdot (\rho \phi_3 w_1^3) + i\xi \rho_3 w_1^3) \\
- \frac{1}{\gamma} \{ i\xi v_3^2 \sigma \phi^{(0)} + \gamma^2 i\xi \rho_3 \sigma w^{(0),3} - \langle Q_0 \tilde{B}_\sigma(u^{(0)} + u_1) \rangle \}.
\]
We thus obtain
\[
\frac{1}{\gamma} |\dot{\phi}_1^3|_2 \leq C\left\{ \left(\frac{1}{\gamma} + \frac{\nu^2}{\gamma^2}\right) |\xi|^2 |\sigma|^2 + \left(\frac{1}{\gamma} + \frac{\nu}{\gamma}\right) |\phi_1^3|_2 \right\} + \left(\frac{1}{\nu + \nu^2} + \frac{\nu^2}{\gamma^2}\right) \tilde{D}_\sigma[w_1].
\]
Multiplying by \(\nu + \nu^2 \) to both sides, we have the desired estimate. This completes the proof. \(\square \)

Let us estimate \(|\phi_1^3|_2 \). We first introduce the Bogovskii lemma.
Proposition 4.8. Let \(\hat{L}^2(D) \) be defined by
\[
\hat{L}^2(D) = \{ f \in L^2(D) : \langle f \rangle = 0 \}.
\]
For any \(f \in \hat{L}^2(D) \), there exists a bounded operator \(\mathcal{B} : \hat{L}^2(D) \to H^1_0(D) \) such that
\[
-\nabla' \cdot \mathcal{B} f = f,
\]
\[
|\nabla' \mathcal{B} f|_2 \leq C|f|_2.
\]

Proof. See, e.g., [2, III.3, Theorem 3.2]. \(\square \)

The proof of the following proposition is based on the argument in Iooss-Padula [3].

Proposition 4.9. There exist constants \(\nu_0 > 0, \gamma_0 > 0 \) and \(\omega_0 > 0 \) such that if \(\nu \geq \nu_0, \gamma \geq \gamma_0 \) and \(\omega \leq \omega_0 \), then there hold the estimates:
\[
\frac{d}{dt} J_0[u_1] + \frac{1}{2} \frac{1}{\nu + \rho} |\phi_1|^2 \leq C \left\{ \frac{1}{\nu + \rho} |w_1|^2 + \frac{1}{\gamma (\nu + \rho)} |\phi_1|^2 \right\},
\]
where
\[
|J_0[u_1]| \leq C \left\{ \frac{1}{\nu + \rho} |w_1|^2 + \frac{1}{\gamma (\nu + \rho)} |\phi_1|^2 \right\},
\]
with \(\psi' = \mathcal{B} \phi_1 \).

Proof. Set \(\psi' = \mathcal{B} \phi_1 \). Taking the inner product of (4.9)\(_2\) with \(\rho_s \psi' \), we get
\[
(\partial_t w'_1, \rho_s \psi') + (\nabla' (\frac{P(\rho_s)}{\rho_s} \phi_1), \rho_s \psi') = I,
\]
where
\[
I = -\nu (\nabla' w'_1, \nabla' \psi') - \nu \xi^2 (w'_1, \psi') + \bar{\nu} (\nabla' \cdot w'_1, \phi_1) + \bar{\nu} i \xi (w^3_1, \phi_1)
- i \xi (\rho_s w^3_1, \psi') + \bar{\nu} i \xi (\sigma u^{(0),3} \phi_1).
\]
We first estimate the first term of the left-hand side of (4.21). It holds that
\[
(\partial_t w'_1, \rho_s \psi') = \frac{d}{dt} (w'_1, \rho_s |\psi'|) - (w'_1, \rho_s \partial_t \psi').
\]
Since
\[
-\nabla' \cdot \partial_t \psi' = \partial_t \phi_1
\]
and
\[
\partial_t \phi_1 = -\left\{ i \xi \nu^3 \phi_1 + \gamma^2 \nabla' \cdot (\rho_s w'_1) + i \xi \gamma^2 \rho_s w^3_1
+ i \xi \nu^3 \sigma \phi^{(0)} + \gamma^3 i \xi \rho_s \sigma u^{(0),3} - \langle Q_0 B \xi (\sigma u^{(0)} + u_1) \rangle \phi^{(0)} \right\},
\]

20
we obtain
\[|(w'_1, \rho_s \partial_t \psi')| \leq C |w'_1|_2 |\partial_t \psi|_2 \]
\[\leq C |w'_1|_2 \{| \phi_1|_2 + \gamma^2 |\nabla' \cdot w'_1|_2 + \gamma^2 |w'_1|_2 + |\xi||\sigma|\} \]
\[\leq \frac{1}{8} |\phi_1|^2 + C \{(\gamma^2 + \frac{\gamma^2}{\nu + \nu'})|w_1|_2^2 + (1 + \gamma^2)|\xi|^2 |w_1|_2 + \gamma^2 |\nabla' \cdot w'_1|_2 + \frac{\nu}{\nu + \nu'} |\xi|^2 |\sigma| \} \]
\[\leq \frac{1}{8} |\phi_1|^2 + C \{(\frac{1}{\nu} + \frac{\gamma^2}{\nu} + \frac{\gamma^2}{\nu + \nu'}) \tilde{D}_\xi |w_1| + \frac{\nu}{\nu + \nu'} |\xi|^2 |\sigma| \} . \]

Furthermore, we have
\[(w'_1, \rho_s \psi') \leq C \{\frac{\gamma^2}{\nu} |w_1|_2^2 + \frac{\nu}{\nu + \nu'} |\phi_1|^2 \} . \]

We next estimate the second term of the left-hand side of (4.21). There exists \(\omega_0 > 0 \) such that if \(\omega \leq \omega_0 \), then it holds that
\[\left(\nabla' \left(\frac{\nu'(\rho)}{\rho} \phi_1 \right), \rho_s \psi' \right) = \left| \sqrt{\frac{\nu'(\rho)}{\rho}} \phi_1 \right|_2 - \left(\frac{\nu'(\rho)}{\rho} \phi_1, (\nabla' \rho_s) \cdot \psi' \right) \]
\[\geq C (1 - \omega) \left| \sqrt{\frac{\nu'(\rho)}{\rho}} \phi_1 \right|_2 \]
\[\geq \frac{3}{4} |\phi_1|^2 . \]

As for \(I \), we have
\[|I| \leq \frac{1}{8} |\phi_1|^2 + C \{ (\nu + \frac{\gamma^2}{\nu + \gamma} + \frac{1}{\nu}) \tilde{D}_\xi |w_1| + \nu |\xi|^2 \tilde{D}_\xi |w_1| + \frac{\nu}{\nu + \nu'} |\xi|^2 |\sigma| \} . \]

Therefore it holds that
\[\frac{d}{dt} (w'_1, \rho_s \psi') + \frac{1}{2} |\phi_1|^2 \leq C \{ (\frac{1}{\nu} + \frac{\gamma^2}{\nu} + \frac{\gamma^2}{\nu + \gamma}) \tilde{D}_\xi |w_1| \]
\[+ \nu |\xi|^2 \tilde{D}_\xi |w_1| + (\frac{\nu}{\nu + \nu'} + \frac{\nu + \gamma}{\nu + \gamma}) |\xi|^2 |\sigma| \} . \]

Multiplying by \(\frac{1}{\nu + \gamma} \) to both sides of this inequality, we have the desired estimate. This completes the proof. \(\Box \)

We next derive the estimate for \(\sigma \). We introduce a notation. Let us define \(J_1[u] \) by
\[J_1[u] = i \xi \frac{1}{\nu + \gamma} (\rho_1 (1 + |\xi|^2)^{-1} [\rho, w_1^2]) \psi \]
for \(u = \sigma v^{(0)} + u_1 \) with \(u_1 = T(\phi_1, w_1^1, w_1^2, w_1^3) \).

Proposition 4.10. There exist constants \(\nu_0 > 0, \gamma_0 > 0, \omega_0 > 0 \) and \(\tilde{\alpha}_0 > 0 \) such that if \(\nu \geq \nu_0, \frac{\gamma^2}{\nu + \gamma} \geq \gamma^2_0 \) and \(\omega \leq \omega_0 \), then there hold the estimates:
\[\frac{1}{2} \frac{d}{dt} \left(\frac{\nu}{\nu + \gamma} |\sigma|^2 + J_1[u] \right) + \frac{1}{2} \frac{\tilde{\alpha}_0}{\nu + \gamma} |\xi|^2 |\sigma| \]
\[\leq C \left\{ \frac{\nu}{\nu + \gamma} |\phi_1|^2 + \frac{1}{\nu + \gamma} |\xi|^2 |\phi_1|^2 + \frac{\nu^2}{(\nu + \gamma)^2} \max \{ 1, |\xi|^2 \} |\xi|^2 |\phi_1|^2 \right\} \]
\[+ \frac{\gamma^2}{(\nu + \gamma)^2} \tilde{D}_\xi |w_1| + \left(\frac{\nu}{\nu + \gamma} + \frac{\nu}{\nu + \gamma} \right) |\xi|^2 \tilde{D}_\xi |w_1| \} \]
\[|J_1[u]| \leq \frac{1}{\gamma} |\sigma|^2 + C \frac{\gamma^2}{(\nu + \gamma)^2} |w_1|^2_2, \]
where \(\tilde{\alpha}_0 \) is a positive constant.
Proof. Since

\[
\langle Q_0 \widetilde{B}_\xi(\sigma u^{(0)} + u_1) \rangle = \langle Q_0 \widetilde{B}_\xi u^{(0)} \rangle \sigma + \gamma^2 i \xi \langle \rho_s w^3_1 \rangle + i \xi \langle \nu \phi_1 \rangle,
\]

(4.8) is written as

\[
\partial_t \sigma + \langle Q_0 \widetilde{B}_\xi u^{(0)} \rangle \sigma + \gamma^2 i \xi \langle \rho_s w^3_1 \rangle = -i \xi \langle \nu \phi_1 \rangle.
\] \hfill (4.23)

Set

\[
\widetilde{B}_\xi^3 = \begin{pmatrix} i \xi \frac{\nu}{\gamma \rho_s} & 0 \\ 0 & i \xi \nu \phi_1 \end{pmatrix}.
\]

Since \(\frac{\nu'(\rho_s)}{\gamma \rho_s} \phi^{(0)} = 0 \), we have

\[
\widetilde{B}_\xi^3 u_0^{(0)} = i \xi \frac{\nu'(\rho_s)}{\gamma \rho_s} \sigma \phi^{(0)} = i \xi \alpha_0.
\]

We thus obtain

\[
-(\Delta' - \xi^2) w^3_1 = -\frac{\alpha_0}{\nu} i \xi \sigma \rho_s - \frac{\alpha_0}{\nu} \partial_t w^3_1 + I^3_1.
\] \hfill (4.24)

Here

\[
I^3_1 = -\frac{\alpha_0}{\nu} \left\{ \tilde{C}_0^3 u_1 - \frac{\nu}{\rho_s} i \xi (\nabla' \cdot w^3_1 + i \xi w^3_1) + \tilde{B}_\xi^3 u_1 + \sigma \tilde{M}_\xi^3 u_1^{(0)} - \langle Q_0 \widetilde{B}_\xi (\sigma u^{(0)} + u_1) \rangle w^{(0),3} \right\},
\]

where \(\tilde{C}_0^3 \) and \(\tilde{M}_\xi^3 \) are 1 \times 4 matrix operators defined by

\[
\tilde{M}_\xi^3 = \begin{pmatrix} 0 & 0 & \frac{\nu + \bar{\nu}}{\rho_s} \xi^2 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{and} \quad \tilde{C}_0^3 = \begin{pmatrix} 0 & 0 & \frac{\nu}{\gamma \rho_s} \Delta' \nu \phi_3 \xi^2 & 0 \end{pmatrix}.
\]

Let \(A \) be the operator on \(L^2(D) \) defined by

\[
A \varphi = -\Delta' \varphi \quad \text{for} \quad \varphi \in D(A) = H^2(D) \cap H^1_0(D).
\]

It then follows from (4.24) that

\[
w^3_1 = -\frac{\alpha_0}{\nu} i \xi \sigma (A + |\xi|^2)^{-1} \rho_s - (A + |\xi|^2)^{-1} \left[\frac{\alpha_0}{\nu} \partial_t w^3_1 \right] + (A + |\xi|^2)^{-1} I^3_1.
\]

Substituting this into (4.23) we obtain

\[
\partial_t \sigma + \langle Q_0 \widetilde{B}_\xi u^{(0)} \rangle \sigma + \frac{\alpha_0 \gamma^2}{\nu} \langle \rho_s (A + |\xi|^2)^{-1} \rho_s \rangle |\xi|^2 |\sigma|^2 = I^0_1 - I^0_2,
\] \hfill (4.25)

where

\[
I^0_1 = -\gamma^2 i \xi \langle \rho_s (A + |\xi|^2)^{-1} I^3_1 \rangle - i \xi \langle \nu \phi_1 \rangle,
\]

\[
I^0_2 = \gamma^2 i \xi \langle \rho_s (A + |\xi|^2)^{-1} \left[\frac{\alpha_0}{\nu} \partial_t w^3_1 \right] \rangle.
\]

Let us calculate \((4.25) \times \overline{\sigma}\) and take its real part. Since \(\text{Re} \{ \langle Q_0 \widetilde{B}_\xi u^{(0)} \rangle \} = 0 \), we have

\[
\frac{1}{2} \frac{d}{dt} |\sigma|^2 + \frac{\alpha_0 \gamma^2}{\nu} \langle \rho_s (A + |\xi|^2)^{-1} \rho_s \rangle |\xi|^2 |\sigma|^2 = \text{Re}(I^0_1 \overline{\sigma}) + \text{Re}(I^0_2 \overline{\sigma}).
\]
Since \(\langle \rho_s(A + |\xi|^2)^{-1}\rho_s \rangle = |(A + |\xi|^2)^{-\frac{1}{2}}\rho_s|^2 \) is continuous in \(\xi \) and is positive for all \(\xi \in \mathbb{R} \), we see that there exists a positive constant \(\alpha_0 = \mathcal{O}(|\xi|^{-2}) \) as \(|\xi| \to \infty \) such that
\[
\frac{\alpha_0^2}{\nu} \langle \rho_s(A + |\xi|^2)^{-1}\rho_s \rangle \geq \frac{\alpha_0^2}{\nu}
\]
for all \(\xi \in \mathbb{R} \) with \(|\xi| \leq R \). We thus obtain
\[
\frac{1}{2} \frac{d}{dt} |\sigma|^2 + \frac{\alpha_0^2}{\nu} |\xi|^2 |\sigma|^2 \leq \text{Re}(I_1^0 \bar{\sigma}) + \text{Re}(I_2^0 \bar{\sigma}).
\]

As for the right-hand side of (4.26), we see from
\[
|(A + |\xi|^2)^{-1}p|_2 \leq \frac{C}{|\xi|^2 + \nu} |p|_2
\]
that
\[
|\text{Re}(I_1^0 \bar{\sigma})| \leq \frac{\alpha_0^2}{\nu} \left(\frac{1}{10} + C \frac{\nu}{1 + \nu^2} \right) \min\{1, |\xi|^2\} |\sigma|^2
\]
\[
+ C \left\{ |\phi_1|^2 + \frac{\nu}{\nu^2} |\xi|^2 |\phi_1|^2 + \frac{\nu}{\nu^2} \max\{1, |\xi|^2\} |\xi|^2 |\phi_1|^2 \right\} \frac{\nu}{\nu^2} D_\xi[w_1] + \frac{\nu}{\nu^2} \frac{\gamma^2 \nu^2}{\nu^2 + (\nu + \nu^2)} |\xi|^2 |\bar{D}_\xi[w_1]|. \tag{4.27}
\]

We next derive the estimate for \(I_2^0 \bar{\sigma} \). There holds that
\[
I_2^0 \bar{\sigma} = \gamma^2 i \xi \langle \rho_s(A + |\xi|^2)^{-1}(\frac{\nu}{\nu^2} \partial_t w_1^3) \rangle \bar{\sigma}
\]
\[
= \frac{d}{dt} \left\{ i \xi \frac{\nu^2}{\nu} \langle \rho_s(A + |\xi|^2)^{-1}(\rho_s w_1^3) \rangle \bar{\sigma} \right\} - i \xi \frac{\nu^2}{\nu} \langle \rho_s(A + |\xi|^2)^{-1}(\rho_s w_1^3) \rangle \partial_\xi \bar{\sigma}.
\]

Let us estimate the second term of the right-hand side of this equation. We see from (4.8) that
\[
\frac{i \xi \nu^2}{\nu} \langle \rho_s(A + |\xi|^2)^{-1}(\rho_s w_1^3) \rangle \partial_\xi \bar{\sigma}
\]
\[
= i \xi \nu^2 \langle \rho_s(A + |\xi|^2)^{-1}(\rho_s w_1^3) \rangle \left\{ - \langle Q_0 \bar{B}_\xi u^{(0)} \rangle - \gamma^2 i \xi \langle \rho_s w_1^3 \rangle - i \xi \langle v_3 \phi_1 \rangle \right\}
\]
\[
\leq C \frac{\nu^2}{\nu^2 + 1 + |\xi|^2} |w_1|_2 \{ |\xi| |\sigma| + \gamma^2 |\xi| |w_1|_2 + |\xi| |\phi_1| \}
\]
\[
\leq \frac{1}{10} \frac{\alpha_0^2}{\nu^2} \min\{1, |\xi|^2\} |\sigma|^2 + C \left\{ \frac{\nu}{\nu^2} |\xi|^2 |\phi_1|^2 + \frac{\nu}{\nu^2} D_\xi[w_1] \right\} \frac{\nu}{\nu^2} \frac{\gamma^2 \nu^2}{\nu^2 + (\nu + \nu^2)} |\xi|^2 |\bar{D}_\xi[w_1]|. \tag{4.28}
\]

We thus obtain
\[
|\text{Re}(I_2^0 \bar{\sigma})| \leq - \frac{d}{dt} \left(\frac{\nu^2}{\nu} J_1[u] \right) + \frac{1}{10} \frac{\alpha_0^2}{\nu^2} \min\{1, |\xi|^2\} |\sigma|^2
\]
\[
+ C \left\{ \frac{\nu}{\nu^2} |\xi|^2 |\phi_1|^2 + \frac{\nu}{\nu^2} D_\xi[w_1] \right\} \frac{\nu}{\nu^2} \frac{\gamma^2 \nu^2}{\nu^2 + (\nu + \nu^2)} |\xi|^2 |\bar{D}_\xi[w_1]|. \tag{4.29}
\]

If \(\frac{1}{\nu}, \frac{\nu}{\nu^2} \) and \(\frac{\nu^2}{\nu^2 + (\nu + \nu^2)} \) are sufficiently small, it then follows from (4.26), (4.27) and (4.28) that
\[
\frac{1}{2} \frac{d}{dt} |\sigma|^2 + \frac{\nu^2}{\nu} J_1[u] \leq C \left\{ |\phi_1|^2 + \frac{\nu}{\nu^2} |\xi|^2 |\phi_1|^2 + \frac{\nu}{\nu^2} \max\{1, |\xi|^2\} |\xi|^2 |\phi_1|^2 \right\}
\]
\[
+ \frac{\nu}{\nu^2} D_\xi[w_1] + \left(\frac{\nu^2}{\nu^2 + (\nu + \nu^2)} \right) |\xi|^2 |\bar{D}_\xi[w_1]|. \tag{4.29}
\]
Futhermore we have the estimate
\[|J_1[u]| = |i \xi \frac{1}{\nu + \nu} \left(\rho_s(A + |\xi|^2)^{-1}[\rho_s w_1^2] \right) \sigma| \leq \frac{1}{\tau} |\sigma|^2 + C \frac{\nu^2}{(\nu + \nu + \nu)} |w_1|^2. \] (4.30)

Multiplying to \(\frac{\nu}{\nu + \nu} \) for (4.29) and (4.30), we obtain the desired estimates. This completes the proof. \(\Box \)

From Proposition 4.7, Proposition 4.9 and Proposition 4.10, we get the estimate of \(|\sigma|, |\phi_1|, \text{ and } |w_1| \).

Proposition 4.11. Let \(R > 0 \). There exist positive constants \(\nu_0, \gamma_0, \omega_0 \) independent of \(R \) and an energy functional \(E_1[u] \) such that if \(\nu \geq \nu_0 R^2, \frac{\gamma_0}{\nu + \nu + \nu} \geq \gamma_0 R^2, \omega \leq \omega_0 \) and \(|\xi| \leq R\), then there hold the estimates:
\[\frac{d}{dt} E_1[u] + \frac{\nu}{\nu + \nu + \nu} (|\xi|^2 |\sigma|^2 + |\phi_1|^2) + \widetilde{D}_\xi [w_1] \leq 0, \] (4.31)
\[\frac{1}{2} \left(\frac{\nu}{\nu + \nu + \nu} |\sigma|^2 + E_0[u_1] \right) \leq C E_1[u] \leq \frac{3}{2} \left(\frac{\nu}{\nu + \nu + \nu} |\sigma|^2 + E_0[u_1] \right), \]
where \(C \) is a positive constant independent of \(u \).

Proof. For a given \(R > 0 \) we assume that \(|\xi| \leq R\). Let \(b_1 > 1 \) and \(b_2 > 1 \) be a constants. Define \(E_1[u] \) by
\[E_1[u] = b_1 \left(1 + \frac{\nu^2}{(\nu + \nu + \nu)} \right) \left(\frac{\nu_0}{\nu^2} |\sigma|^2 + E_0[u_1] \right) + b_2 J_0[u_1] + \frac{\nu}{(\nu + \nu + \nu)} |\sigma|^2 + J_1[u]. \]
Since we have
\[\frac{1}{2} (|\phi_1|^2 + |w_1|^2) \leq C_0 E_0[u_1] \leq \frac{3}{2} (|\phi_1|^2 + |w_1|^2), \]
\[|J_0[u_1]| \leq C_1 \left\{ \frac{\nu}{(\nu + \nu + \nu)} |\phi_1|^2 + \frac{\gamma_0^2}{(\nu + \nu + \nu)} |w_1|^2 \right\}, \]
\[|J_1[u]| \leq \frac{1}{\tau} |\sigma|^2 + C_2 \frac{\nu^2}{(\nu + \nu + \nu)} |w_1|^2, \]

if \(\frac{1}{\nu + \nu + \nu} < 1 \) and \(b_1 > 8 \max \{ C_0 C_1 b_2, C_0 C_2, \alpha_0^{-1} \} \), then there exists a constant \(C > 0 \) such that
\[\frac{1}{2} \left(\frac{\nu}{\nu + \nu + \nu} |\sigma|^2 + E_0[u_1] \right) \leq C E_1[u] \leq \frac{3}{2} \left(\frac{\nu}{\nu + \nu + \nu} |\sigma|^2 + E_0[u_1] \right). \] (4.32)

Let us compute \(b_1 \times (1 + \frac{\gamma_0^2}{(\nu + \nu + \nu)}) \times (4.11) + b_2 \times (4.20) + (4.22) \) then
\[\frac{1}{2} \frac{d}{dt} E_1[u] + \frac{b_1}{2} \left(1 + \frac{\nu^2}{(\nu + \nu + \nu)} \right) \widetilde{D}_\xi [w_1] + b_2 \frac{1}{2} \frac{\nu}{\nu + \nu + \nu} |\phi_1|^2 + \frac{\gamma_0}{\nu + \nu + \nu} |\xi|^2 |\sigma|^2 \]
\[\leq C_3 \left\{ b_1 \left(1 + \frac{\nu^2}{(\nu + \nu + \nu)} \right) \left(\frac{1}{\nu^2} + \frac{\nu}{\nu + \nu + \nu} \right) |\xi|^2 |\sigma|^2 + b_2 \left(1 + \frac{\nu^2}{(\nu + \nu + \nu)} \right) \left(\frac{1}{\nu^2} + \frac{\nu}{\nu + \nu + \nu} \right) |\phi_1|^2 \right. \]
\[+ b_2 \left(\frac{1}{\nu^2} + \frac{\nu}{\nu + \nu + \nu} \right) |\xi|^2 |\sigma|^2 + b_2 \left(1 + \frac{\nu^2}{(\nu + \nu + \nu)} \right) \widetilde{D}_\xi [w_1] + b_2 \frac{\nu}{\nu + \nu + \nu} |\xi|^2 |\phi_1|^2 \]
\[+ \frac{\nu}{(\nu + \nu + \nu)} |\phi_1|^2 + \frac{1}{\nu + \nu + \nu} |\xi|^2 |\phi_1|^2 + \frac{\nu^2}{\nu + \nu + \nu} \max \{ 1, |\xi|^2 \} |\xi|^2 |\phi_1|^2 \]
\[+ \frac{\nu^2}{(\nu + \nu + \nu)} \widetilde{D}_\xi [w_1] + \left(\frac{\nu^2}{(\nu + \nu + \nu)^2} + \frac{1}{\nu} \right) |\xi|^2 \widetilde{D}_\xi [w_1]. \]
Fix $b_1 > 1$ and $b_2 > 1$ so large that $b_2 \geq 16C_3R^2$ and $b_1 \geq 16 \max\{C_0C_1b_2, C_0C_2, \alpha_0^{-1}, C_3b_2, C_3R^2\}$. We assume that $\nu \geq \nu_0$ and $\gamma \geq \gamma_0$ are so large that $\nu \geq 16C_3b_1 \max\{\alpha_0^{-1}, b_2^{-1}, 1\}$ and $\gamma^2 > 16C_3(1 + \alpha^{-1} + \alpha^{-\frac{1}{2}})(\nu + \bar{\nu}) \max\{b_1, b_2, b_2^{-1}(1 + R^2)\}$. It then follows that there exists a constant $C > 0$ such that

$$\frac{d}{dt} E_1[u] + C \left\{ \frac{1}{\nu + \bar{\nu}} \xi^2 \nu_1^2 + \frac{1}{\nu + \bar{\nu}} \phi_1^2 + \tilde{D}_\xi[w_1] \right\} \leq 0. \quad (4.33)$$

We thus obtain the desired estimates. This completes the proof. \[\square \]

We are now in a position to prove the estimate of the L^2 norm of $U_1(t)u_0$.

Proposition 4.12. Let $R > 0$. There exist positive constants ν_0, γ_0 and ω_0 such that if $\nu \geq \nu_0R^2$, $\frac{\nu}{\nu + \bar{\nu}} \geq 16 \gamma_0^2R^2$, and $\omega \leq \omega_0$, then for any $l = 0, 1, \cdots$, there exists a constant $C = C(l) > 0$ such that the estimate

$$\|\partial_{\xi^l} \tilde{F}^{-1} [\chi(R)e^{-t \tilde{\xi} \tilde{u}_0}] \|_{L^2} \leq C(1 + t)^{-\frac{1}{2} - \frac{l}{2}} \|u_0\|_{L^1(R; L^2(D))} \quad (4.34)$$

holds for $t \geq 0$.

Proof. For a given $R > 0$, we assume that $|\xi| \leq R$. Since

$$|\xi|^2|\nu|^2 + |\phi_1|^2 + \tilde{D}_\xi[w_1] \geq \tilde{d}_0|\xi|^2(|\nu|^2 + |\phi_1|^2 + |w_1|^2)$$

for some constant $\tilde{d}_0 = \tilde{d}_0(R) > 0$, we see from (4.31) that there exists a constant $d_0 > 0$ such that

$$\frac{d}{dt} E_1[u](t) + \tilde{d}_0|\xi|^2|u_1|^2 \leq 0.$$

This implies that

$$|e^{-t \tilde{\xi} \tilde{u}_0}(\xi)|_{L^2} \leq C e^{-\tilde{d}_0|\xi|^2|u_0(\xi)|_{L^2}}. \quad (4.35)$$

We thus obtain the desired estimate. This completes the proof. \[\square \]

We next estimate derivatives of u. We introduce some notations. We define $J^{(0)}_2[u]$ by

$$J^{(0)}_2[u] = -2 \text{Re} \, \langle \sigma u^{(0)} + u_1, \tilde{B}_\xi \tilde{Q} u_1 \rangle \quad \text{for } u = \sigma u^{(0)} + u_1.$$

In addition, we set

$$E^{(0)}_2[u] = (1 + \frac{b_3^*}{\nu}) \left(\frac{\nu}{\nu + \bar{\nu}} |\nu|^2 + E_0[u_1] \right) + \tilde{D}_\xi[w_1],$$

$$\tilde{E}^{(0)}_2[u] = E^{(0)}_2[u] + J^{(0)}_2[u],$$

where b_3 is a positive constant to be determined later. We note that there exists a constant $b_3^* > 0$ such that if $b_3 \geq b_3^*$ and $\gamma_2 \geq 1$ then

$$\frac{1}{2} E^{(0)}_2[u] \leq \tilde{E}^{(0)}_2[u] \leq \frac{3}{2} E^{(0)}_2[u].$$

Taking b_3 suitably large, we have the following estimate for $\tilde{E}^{(0)}_2[u]$.\[\blacksquare \]
Proposition 4.13. There exist constants $b_3 \geq b_3^*$ and $\nu_0 > 0$ such that if $\nu \geq \nu_0$ and $\gamma^2 \geq 1$, then there holds the estimate:

$$
\frac{1}{2}\frac{d}{dt} E_2^{(0)}[u] + \frac{1}{2} b_3 \frac{\gamma^2}{\nu} \tilde{D}_\xi [w_1] + \frac{1}{2} |\sqrt{\rho} \partial_t w_1|_2^2 \\
\leq C \left\{ \left(\frac{1}{\nu} + \frac{\nu + \nu^2}{\nu^2} \right) |\xi|^2 |\sigma|^2 + \frac{(\nu + \nu^2)}{\gamma^2} |\xi|^4 |\sigma|^2 \right\} \tag{4.36}
$$

Next we show the estimate. It follows from (4.37), (4.38) and (4.39) that

applying Remark 4.5 and Lemma 4.6, we obtain

We first consider the first term on the left-hand side of (4.37). Since

$$
\partial_t \sigma = -\langle Q_0 \tilde{B}_\xi (\sigma u^{(0)} + u_1) \rangle,
$$

$$
\langle u^{(0)}, \partial_t \tilde{Q} u_1 \rangle = \langle u_1^{(0)}, \partial_t \tilde{Q} u_1 \rangle,
$$

applying Remark 4.5 and Lemma 4.6, we obtain

$$
\text{Re} \langle \partial_t u, \partial_t \tilde{Q} u_1 \rangle = \text{Re} \left\{ \langle \partial_t \sigma u^{(0)}, \partial_t \tilde{Q} u_1 \rangle + \langle \partial_t u_1, \partial_t \tilde{Q} u_1 \rangle \right\}
$$

$$
= \text{Re} \left\{ -\langle Q_0 \tilde{B}_\xi (\sigma u^{(0)} + u_1) \rangle \langle u_1^{(0)}, \partial_t \tilde{Q} u_1 \rangle + |\sqrt{\rho} \partial_t w_1|_2^2 \right\} \tag{4.38}
$$

$$
\geq \frac{7}{8} |\sqrt{\rho} \partial_t w_1|_2^2 - C \left\{ \frac{1}{\nu^2} |\xi|^2 |\sigma|^2 + |\phi_1|_2^2 + \frac{1}{\nu} \tilde{D}_\xi [w_1] \right\}.
$$

As for the second term on the left-hand side of (4.37), we see from $\tilde{L}_0 u^{(0)} = 0$ and $\tilde{B}_0 u^{(0)} = 0$ that

$$
\langle \tilde{L}_\xi u, \partial_t \tilde{Q} u_1 \rangle = \langle \tilde{M}_\xi (\sigma u^{(0)}), \partial_t \tilde{Q} u_1 \rangle + \langle \tilde{L}_\xi u_1, \partial_t \tilde{Q} u_1 \rangle
$$

$$
= \langle \tilde{A}_\xi (\sigma u^{(0)}), \partial_t \tilde{Q} u_1 \rangle + \langle \tilde{B}_\xi (\sigma u^{(0)} + u_1), \partial_t \tilde{Q} u_1 \rangle
$$

$$
+ \langle \tilde{A}_\xi u_1, \partial_t \tilde{Q} u_1 \rangle + \langle \tilde{C}_0 u_1, \partial_t \tilde{Q} u_1 \rangle \tag{4.39}
$$

It follows from (4.37), (4.38) and (4.39) that

$$
\frac{7}{8} |\sqrt{\rho} \partial_t w_1|_2^2 + \langle \tilde{A}_\xi (\sigma u^{(0)}), \partial_t \tilde{Q} u_1 \rangle + \langle \tilde{B}_\xi (\sigma u^{(0)} + u_1), \partial_t \tilde{Q} u_1 \rangle
$$

$$
+ \langle \tilde{A}_\xi u_1, \partial_t \tilde{Q} u_1 \rangle + \langle \tilde{C}_0 u_1, \partial_t \tilde{Q} u_1 \rangle \leq C \left\{ \frac{1}{\nu^2} |\xi|^2 |\sigma|^2 + \frac{1}{\nu^2} |\xi|^2 |\phi_1|_2^2 + \frac{1}{\nu} \tilde{D}_\xi [w_1] \right\}.
$$

Next we show the estimate

$$
\text{Re} \left\{ \langle \tilde{B}_\xi (\sigma u^{(0)} + u_1), \partial_t \tilde{Q} u_1 \rangle + \langle \tilde{A}_\xi u_1, \partial_t \tilde{Q} u_1 \rangle \right\}
$$

$$
\geq \frac{1}{2} \frac{d}{dt} \left\{ \tilde{D}_\xi [w_1] + J_2^{(0)}[u] \right\} - \epsilon |\sqrt{\rho} \partial_t w_1|_2^2
$$

$$
- C \left\{ \left(\frac{1}{\nu^2} + \frac{1}{\nu^2} \right) |\xi|^2 |\sigma|^2 + \frac{1}{\nu^2} |\xi|^2 |\phi_1|_2^2 + \frac{1}{\nu^2} + \frac{1}{\nu} \right\} \tilde{D}_\xi [w_1] \right\}. \tag{4.41}
$$
for any $\epsilon > 0$ with C independent of ϵ. In fact, it holds by integrating by parts that

$$\text{Re}\langle \tilde{A}_\xi u_1, \partial_t \tilde{Q}u_1 \rangle = \frac{1}{2} \frac{d}{dt} \tilde{D}_\xi[w_1].$$

(4.42)

Since $\tilde{B}_\xi^* = -\tilde{B}_\xi$, we see that

$$\langle \tilde{B}_\xi(\sigma u_0^{(0)}), \partial_t \tilde{Q}u_1 \rangle = -\frac{d}{dt}\langle \sigma u_0^{(0)}, \tilde{B}_\xi \tilde{Q}u_1 \rangle + \langle \partial_t(\sigma u_0^{(0)}), \tilde{B}_\xi \tilde{Q}u_1 \rangle.$$

(4.43)

By (4.8) we have

$$\partial_t \sigma = -\langle Q_0 \tilde{B}_\xi(\sigma u^{(0)} + u_1) \rangle.$$

It then follows from Lemma 4.6 that

$$\left| \langle \partial_t(\sigma u_0^{(0)}), \tilde{B}_\xi \tilde{Q}u_1 \rangle \right| \leq \left| \langle Q_0 \tilde{B}_\xi(\sigma u_0^{(0)} + u_1) \rangle \right| \left| \langle u_0^{(0)}, \tilde{B}_\xi \tilde{Q}u_1 \rangle \right|$$

$$\leq C \left\{ \frac{1}{\gamma^2} |\sigma|^2 + |\phi_1|^2 + \left(\frac{1}{\nu \gamma^2} + \frac{\alpha^2}{\nu} \right) \tilde{D}_\xi[w_1] \right\}.$$

(4.44)

Similarly to above, there holds the following equation:

$$\langle \tilde{B}_\xi u_1, \partial_t \tilde{Q}u_1 \rangle = -\frac{d}{dt}\langle u_1, \tilde{B}_\xi \tilde{Q}u_1 \rangle + \langle \partial_t u_1, \tilde{B}_\xi \tilde{Q}u_1 \rangle.$$

(4.45)

We estimate the second term on the right-hand of (4.45). By (4.9) we have

$$\partial_t Q_0 u_1 = -Q_0 \left\{ \tilde{L}_\xi u_1 + \tilde{M}_\xi(\sigma u_0) - \langle Q_0 \tilde{B}_\xi(\sigma u_0 + u_1) \rangle u_0 \right\}$$

$$= -Q_0 \tilde{B}_\xi u_1 - \tilde{Q}_0 \tilde{B}_\xi(\sigma u_0) + \langle Q_0 \tilde{B}_\xi(\sigma u_0 + u_1) \rangle u_0.$$

Since $\langle \partial_t Q_0 u_1, \tilde{B}_\xi \tilde{Q}u_1 \rangle = \langle \partial_t Q_0 u_1, Q_0 \tilde{B}_\xi \tilde{Q}u_1 \rangle$, we see from Lemma 4.6 that

$$\left| \langle \partial_t Q_0 u_1, \tilde{B}_\xi \tilde{Q}u_1 \rangle \right|$$

$$\leq C \left\{ \left| Q_0 \tilde{B}_\xi u_1 \right|_2 + \left| Q_0 \tilde{B}_\xi(\sigma u_0) \right|_2 \right.$$

$$\left. + \left| Q_0 \tilde{B}_\xi(\sigma u_0 + u_1) \rangle u_0 \right|_2 \right\} \times \frac{1}{\gamma^2} |Q_0 \tilde{B}_\xi \tilde{Q}u_1|_2$$

$$\leq C \left\{ \frac{1}{\gamma^2} |\sigma|^2 + |\phi_1|^2 + \left(\frac{1}{\nu \gamma^2} + \frac{\alpha^2}{\nu} \right) \tilde{D}_\xi[w_1] \right\}.$$

(4.46)

The third term on the right-hand of (4.45) is estimated as

$$\left| \langle \partial_t \tilde{Q}u_1, \tilde{B}_\xi \tilde{Q}u_1 \rangle \right| \leq C \sqrt{\rho_s} |\partial_t w_1|_2 \left(|\nabla' \cdot (\rho_s w_1') + i \xi \rho_s w_1^2 + |\xi||w_1|_2 \right)$$

$$\leq \epsilon \sqrt{\rho_s} |\partial_t w_1|_2 + C \frac{1}{\nu} \tilde{D}_\xi[w_1]$$

for any $\epsilon > 0$ with C independent of ϵ. This, together with (4.45) and (4.46), leads to the inequality

$$\text{Re}\langle \tilde{B}_\xi u_1, \partial_t \tilde{Q}u_1 \rangle$$

$$\geq -\frac{d}{dt}\langle u_1, \tilde{B}_\xi \tilde{Q}u_1 \rangle - \epsilon \sqrt{\rho_s} |\partial_t w_1|_2^2$$

$$- C \left\{ \frac{1}{\gamma^2} |\sigma|^2 + |\phi_1|^2 + \left(\frac{1}{\nu \gamma^2} + \frac{\alpha^2}{\nu} + \frac{1}{\nu} \right) \tilde{D}_\xi[w_1] \right\}$$

(4.47)
for any $\epsilon > 0$ with C independent of ϵ. Furthermore, we have
\[
|\langle \hat{B}_\xi(\sigma u_1^{(0)}), \partial_1 \tilde{Q} u_1 \rangle| \leq C|\sqrt{\rho_\sigma \partial_1 w_1}|_2 |i \xi \rho_\sigma \sigma u^{(0),3} + i \xi v^3 \sigma w^{(0),3}|_2 \\
\leq \epsilon |\sqrt{\rho_\sigma \partial_1 w_1}|^2 + C \frac{1}{\epsilon \gamma^4} |\xi|^2 |\sigma|^2
\]
(4.48)
for any $\epsilon > 0$ with C independent of ϵ. By (4.43), (4.44), (4.47) and (4.48), we obtain
\[
|\langle \hat{B}_\xi(\sigma u_0) + u_1, \partial_1 \tilde{Q} u_1 \rangle| \\
\leq -\frac{1}{2} \frac{d}{dt} J_2^{(0)}[u] - \epsilon |\sqrt{\rho_\sigma \partial_1 w_1}|^2 \\
- C\{ (\frac{1}{\gamma^2} + \frac{1}{\gamma^2}) |\xi|^2 |\sigma|^2 + \frac{1}{\gamma^2} |\xi|^2 |\phi_1|^2 + (\frac{1}{\gamma^2} + \frac{1}{\gamma^2} + \frac{1}{\gamma^2}) \tilde{D}_\xi[w_1] \}.
\]
This, together with (4.42), gives (4.41).

The remaining terms on the left-hand side of (4.40) are estimated as
\[
|\langle \hat{A}_\xi(\sigma u_0), \partial_1 \tilde{Q} u_1 \rangle| \\
\leq C \{ \| \nabla^{(0),3} \|_2 + (\nu + \nu_\sigma) |\xi|^2 |\sigma|^2 |\nabla \partial_1 w_1|_2 \} \\
\leq \epsilon |\sqrt{\rho_\sigma \partial_1 w_1}|^2 + C \frac{1}{\epsilon} \{ \frac{\nu}{\gamma^2} |\xi|^2 |\sigma|^2 + \frac{1}{\gamma^2} |\xi|^2 |\sigma|^2 \},
\]
(4.49)
\[
|\langle \hat{C}_0 u_1, \partial_1 \tilde{Q} u_1 \rangle| \leq C \{ \frac{\nu}{\gamma^2} |\phi_1|^2 + |w_1^2| |\nabla \partial_1 w_1|_2 \} \\
\leq \epsilon |\sqrt{\rho_\sigma \partial_1 w_1}|^2 + C \frac{1}{\epsilon} \{ \frac{\nu}{\gamma^2} |\phi_1|^2 + \frac{1}{\nu} \tilde{D}_\xi[w_1] \}.
\]
(4.50)
Here ϵ is an arbitrary positive number and C is a constant independent of ϵ. Taking $\epsilon > 0$ suitably small, we see from (4.40) with (4.41), (4.49) and (4.50) that if $\nu \geq 1$ and $\gamma^2 \geq 1$, then
\[
\frac{1}{2} \frac{d}{dt} \{ \tilde{D}_\xi[w_1] + J_2^{(0)}[u] \} + \frac{3}{2} |\sqrt{\rho_\sigma \partial_1 w_1}|^2 \\
\leq C_0 \{ \frac{1}{\gamma^2} + \frac{\nu}{\gamma^2} |\xi|^2 |\sigma|^2 + \frac{1}{\gamma^2} |\xi|^2 |\phi_1|^2 + \frac{1}{\nu} \tilde{D}_\xi[w_1] \},
\]
(4.51)
We take b_3 as $b_3 \geq \max\{ b_3^*, 4C_0 \}$ and then add (4.51) to $b_3 \frac{\gamma^2}{\nu} \times (4.11)$, to get (4.36). This completes the proof. \qed

We next establish the estimate for higher order derivatives near the boundary ∂D. We introduce the local curvilinear coordinate system.

For any $\pi_0 \in \partial D$, there exist a neighborhood \tilde{O}_{π_0} of π_0' and a smooth diffeomorphism map $\Psi = (\Psi_1, \Psi_2) : \tilde{O}_{\pi_0} \rightarrow B_1(0) = \{z' = (z_1, z_2) : |z'| < 1\}$ such that
\[
\begin{cases}
\Psi(\tilde{O}_{\pi_0} \cap D) = \{z' \in B_1(0) : z_1 > 0\}, \\
\Psi(\tilde{O}_{\pi_0} \cap \partial D) = \{z' \in B_1(0) : z_1 = 0\}, \\
\det \nabla_x \Psi \neq 0 \quad \text{on} \quad \tilde{O}_{\pi_0} \cap D.
\end{cases}
\]
By the tubular neighborhood theorem, there exist a neighborhood \(O_{\pi_0} \) of \(\pi'_0 \) and a local curvilinear coordinate system \(y' = (y_1, y_2) \) on \(O_{\pi_0} \) defined by
\[
x' = y_1a_1(y_2) + \Psi^{-1}(0, y_2) : R \to O_{\pi_0},
\]
where \(R = \{ y' = (y_1, y_2) : |y_1| \leq \delta_1, |y_2| \leq \delta_2 \} \) for some \(\delta_1, \delta_2 > 0 \); \(a_1(y_2) \) is the unit inward normal to \(\partial D \) that is given by
\[
a_1(y_2) = \frac{\nabla_x \Psi_1}{|\nabla_x \Psi_1|}.
\]
We set \(y_3 = x_3 \). It then follows that
\[
\nabla_x = e_1(y_2) \partial_{y_1} + J(y')e_2(y_2) \partial_{y_2} + e_3 \partial_{y_3},
\]
\[
\nabla_y = \begin{pmatrix} \frac{\partial e_1(y_2)}{\partial y_1} \\ \frac{\partial e_2(y_2)}{\partial y_1} \\ \frac{\partial e_3}{\partial y_1} \end{pmatrix} \nabla_x,
\]
where
\[
e_1(y_2) = \begin{pmatrix} a_1(y_2) \\ 0 \end{pmatrix}, \quad e_2(y_2) = \begin{pmatrix} a_2(y_2) \\ 0 \end{pmatrix}, \quad e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix};
\]
\[
J(y') = |\det \nabla_x \Psi|, \quad a_2(y_2) = \frac{-\nabla_x^T \Psi_1}{|\nabla_x^T \Psi_1|}
\]
with \(\nabla_x^T \Psi_1 = \nabla_r \Psi_1, \partial_{x_1} \Psi_1 \). Note that \(\partial_{y_1} \) and \(\partial_{y_2} \) are the inward normal derivative and tangential derivative at \(x' = \Psi^{-1}(0, y_2) \in \partial D \cap O_{\pi_0} \), respectively. We denote the normal and tangential derivatives by \(\partial_n \) and \(\partial \), i.e.,
\[
\partial_n = \partial_{y_1}, \quad \partial = \partial_{y_2}.
\]
Since \(\partial D \) is compact, there are bounded open sets \(O_m \) \((m = 1, \ldots, N)\) such that \(\partial D \subset \bigcup_{m=1}^N O_m \) and for each \(m = 1, \ldots, N \), there exists a local curvilinear coordinate system \(y' = (y_1, y_2) \) as defined in (4.52) with \(\pi_0 \), \(\Psi \) and \(R \) replaced by \(O_m \), \(\Psi^m \) and \(R_m = \{ y' = (y_1, y_2) : |y_1| < \delta_1^m, |y_2| < \delta_2^m \} \) for some \(\delta_1^m, \delta_2^m > 0 \). At last, we take an open set \(O_0 \subset D \) such that
\[
\bigcup_{m=0}^N O_m \supset D, \quad \bigcap_{m=0}^N \partial D = \emptyset.
\]
We set a local coordinate \(y' = (y_1, y_2) \) such that \(y_1 = x_1, y_2 = x_2 \) on \(O_0 \).

Note that if \(h \in H^2(D) \), then \(h |_{\partial D} = 0 \) implies that \(\partial^k h |_{\partial D \cap O_m} = 0 \) \((k = 0, 1)\).

Let us introduce a partition of unity \(\{ \chi_m \}_{m=0}^N \) subordinate to \(\{ O_m \}_{m=0}^N \), satisfying
\[
\sum_{m=0}^N \chi_m = 1 \text{ on } D, \quad \chi_m \in C^\infty_0(O_m) \text{ (m = 0, 1, \ldots, N)}.
\]
In the following we will denote by \([A, B]\) the commutator of \(A \) and \(B \), i.e.,
\[
[A, B] = AB - BA.
\]
Lemma 4.14. For $1 \leq m \leq N$ there hold the following estimates.

(i) $|\partial, \partial_{x_j}| h \leq C |\partial_{x_j}| h$ for $h \in H^2(D)$ and $j = 1, 2$.

(ii) $|\chi_m(\partial, \partial_{x_j}) h, \chi_m \partial h| \leq C |\chi_m \partial_{x_j} h|_2^2$ for $h \in H^2(D)$ and $j = 1, 2$.

(iii) $|\chi_m(\partial, \partial_{x_j}, \partial_{x_k}) h, \chi_m \partial h| \leq \eta |\chi_m \partial_{x_j} \partial_{x_k} h|_2 + C (1 + \frac{1}{\gamma}) |\partial_{x_j} h|_{L^2(D \cap O_m)}$ for all $\eta > 0$, $h \in H^2(D)$ with $\partial h|_{D \cap O_m} = 0$ and $k, l = 1, 2$.

Proof. (i) For $x' \in D \cap O_m$, we set $y' = \Psi^m(x')$, $h(x') = \tilde{h}(y')$. Then there exists a smooth matrix valued function $A_1(y')$ such that $\nabla x' = A_1(y') \nabla y'$. We thus find that

$$[\partial, \partial_{x_j}] h = \partial_{x_j} h - \partial_{x_j} h = \sum_{0 \leq l_1, 0 \leq l_2, l_1 + l_2 = 1} h_{l_1 l_2} \partial_{x_j} h_{l_1 l_2},$$

where $h_{l_1 l_2} = h_{l_1 l_2}(y')$ are smooth functions depending only on $D \cap O_m$. Since

$$\frac{1}{\epsilon} |\partial_{x_j} \tilde{h}| \leq |\partial_{x_j} h| \leq C |\partial_{x_j} \tilde{h}|$$

for some constant $C > 0$, we have the desired inequality. This completes the proof of (i).

(ii) The estimate in (ii) immediately follows from (i).

(iii) We have $\nabla y' = A_1(y')^{-1} \nabla x'$. We set $A_1(y')^{-1} = (c_{ij}(x'))_{ij}$. There holds that

$$[\partial, \partial_{x_{j_k}}] h = -2 \sum_{j=1}^2 \{ \partial_{x_k} c_{j_k} \partial_{x_j} h + \partial_{x_k} c_{j_k} \partial_{x_j} h + \partial_{x_k} c_{j_k} \partial_{x_j} h \}. $$

It follows from integration by parts that

$$\left| (\chi_m \partial_{x_k} c_{j_k} \partial_{x_j} h, \chi_m \partial h) \right|$$

$$= \left| (\chi_m \partial_{x_k} c_{j_k} \partial_{x_j} h, \chi_m \partial_{x_j} h) + (\chi_m \partial_{x_k} c_{j_k} \partial_{x_j} h, \chi_m \partial h) + (\chi_m \partial_{x_k} c_{j_k} \partial_{x_j} h, \partial_{x_j} h) \right|$$

$$\leq C \left\{ |\chi_m \partial_{x_k} h|_2 |\chi_m \partial_{x_j} h|_2 + |\chi_m \partial_{x_k} h|_2 |\chi_m \partial h|_2 + |\partial_{x_j} h|_{L^2(D \cap O_m)} |\chi_m \partial h|_2 \right\}$$

$$\leq \eta |\chi_m \partial_{x_j} \partial_{x_k} h|_2 + C (1 + \frac{1}{\eta}) |\partial_{x_j} h|_{L^2(D \cap O_m)^2}.$$

This complete the proof of (iii).

We are in a position to estimate higher order derivatives. We first derive the estimate for $\partial \phi_1$.

Proposition 4.15. For $1 \leq m \leq N$, there exist constants $\nu_0 > 0$ and $b > 0$ such that if $\nu \geq \nu_0$, $\gamma^2 \geq 1$ and $\omega \leq 1$, then there holds the estimate:

$$\frac{1}{2} \frac{d}{dt} \left(\frac{1}{\gamma^2} |\chi_m \nabla \sqrt{\frac{P(\nu_0)}{\gamma^2}} \partial \phi_1|_2^2 + |\chi_m \sqrt{\nu} \partial w_1|_2^2 \right)$$

$$+ \frac{b}{\gamma^2} \left(\frac{\nu^2}{\gamma^2} \right) |\chi_m \nabla \partial w_1|_2^2 + \frac{\nu |\chi_m \nabla \partial w_1|_2^2}{2} + \frac{\nu |\chi_m \partial w_1|_2^2}{2} + \frac{\nu |\chi_m \partial w_1|_2}{2} = \left(\frac{1}{\gamma^2} + \frac{\nu^2}{\gamma^2} \right) |\chi_m \nabla \partial w_1|_2^2$$

$$+ \left(\frac{1}{\gamma^2} + \frac{\nu^2}{\gamma^2} \right) |\chi_m \partial w_1|_2^2 + \left(\frac{1}{\nu} + 1 \right) \tilde{D}_x |w_1| + \left(\frac{\nu^2}{\gamma^2} + 1 \right) \tilde{D}_x \left| D_\xi |w_1| \right|$$

(4.54)

for any $\eta > 0$ with C independent of η.
Proof. Applying ∂ to (4.9), we have
\[
\begin{dcases}
\partial_t \phi_1 + i \xi v_3^2 \partial \phi_1 + \gamma^2 \nabla' \cdot (\rho_s \partial w_1') + i \xi \rho_s \partial w_1^3 = \tilde{F}_0^0, \\
\partial_t w_1' - \frac{a}{\rho_s} (\Delta' - |\xi|^2) \partial w_1' - \frac{a}{\rho_s} \nabla' \nabla' \cdot \partial w_1' + i \xi \partial w_1^3 \\
+ \nabla' \left(\frac{P(\rho_s)}{\gamma^2 \rho_s} \partial \phi_1 \right) + i \xi v_3^2 \partial w_1^3 = \tilde{G}^0, \\
\partial_t w_1^3 - \frac{a}{\rho_s} (\Delta' - |\xi|^2) \partial w_1^3 - \frac{a}{\rho_s} i \xi (\nabla' \cdot \partial w_1' + i \xi \partial w_1^3) \\
+ i \xi \left(\frac{P(\rho_s)}{\gamma^2 \rho_s} \partial \phi_1 \right) + i \xi v_3^2 \partial w_1^3 + \frac{a}{\rho_s} \Delta' v_3^3 \partial \phi_1 + \partial w_1' \cdot \nabla' v_s^3 = \tilde{G}^3
\end{dcases}
\] (4.55)

on $D \cap \mathcal{O}_m$ and
\[\partial w_1 \mid_{\partial D \cap \mathcal{O}_m} = 0.\]

Here $\tilde{F}_0 = F_0^0 + F_0^2$, $\tilde{G}^0 = G_1^0 + G_2^0$ and $\tilde{G}^3 = G_1^3 + G_2^3$, with
\[
\begin{align*}
F_0^1 &= -[\partial, i \xi v_3^2] \phi_1 - \gamma^2 [\partial, \nabla' \cdot \rho_s] w_1' \gamma^2 [\partial, i \xi \rho_s] w_1^3, \\
G_1^1 &= \nu \left[\partial, \frac{1}{\rho_s} \Delta' \right] w_1' - \nu \left[\partial, \frac{1}{\rho_s} |\xi|^2 \right] w_1' + \tilde{v} \left[\partial, \frac{1}{\rho_s} \nabla' \nabla' \right] w_1' \nu \left[\partial, \frac{1}{\rho_s} \nabla' (i \xi) \right] w_1^3 \\
&- \left[\partial, \nabla' \left(\frac{P(\rho_s)}{\gamma^2 \rho_s} \right) \right] \phi_1 - \left[\partial, i \xi v_3^2 \right] w_1', \\
G_2^1 &= \nu \left[\partial, \frac{1}{\rho_s} \Delta' \right] w_1^3 - \nu \left[\partial, \frac{1}{\rho_s} |\xi|^2 \right] w_1^3 + \tilde{v} \left[\partial, \frac{1}{\rho_s} i \xi \nabla' \cdot \right] w_1' - \tilde{v} \left[\partial, \frac{1}{\rho_s} |\xi|^2 \right] w_1^3 \\
&- \left[\partial, \frac{a}{\rho_s} \Delta' v_3^3 \right] \phi_1 - \left[\partial, i \xi \left(\frac{P(\rho_s)}{\gamma^2 \rho_s} \right) \right] \phi_1 - \left[\partial, i \xi v_3^2 \right] w_1^3 - \left[\partial, (\nabla' v_3^3) \right] w_1', \\
F_0^2 &= -\{ i \xi \sigma \partial (v_3^3 \phi_1^0) \} + \gamma^2 i \xi \sigma \partial (\rho_s w_1^0)^3 \} - \{ Q_0 \tilde{B}_1 (\sigma u_0^0 + u_1) \} \partial \phi \{ 0 \}, \\
G_2^2 &= \{ -\tilde{w} i \xi \sigma \partial (\nu v_3^2 \partial w_1^0)^3 \} + i \xi \sigma \partial (v_3^3 \partial w_1^0)^3 \} - \{ Q_0 \tilde{B}_1 (\sigma u_0^0 + u_1) \} \partial w_1^0 \}. \\
\end{align*}
\]

We set $\tilde{F} = T(\tilde{F}_0, \tilde{G}_0, \tilde{G}_3)$, $F_1 = T(F_0^1, G_1^1, G_1^3)$ and $F_2 = T(F_0^2, G_2^1, G_2^3)$. Taking the weighted inner product of (4.55) with $\chi_m^2 \partial u_1$, we have
\[
\begin{align*}
&\frac{1}{2} \frac{d}{dt} \left(\frac{1}{\gamma^2} \chi_m \sqrt{\frac{P(\rho_s)}{\gamma^2 \rho_s}} \partial \phi_1^2 \right) + \left| \chi_m \sqrt{\rho_s} \partial w_1^1 \right|^2 \\
&+ \nu \left[|\chi_m \nabla' \partial w_1^1 |_2^2 + |\chi_m \nabla' \partial w_1^1 |_2^2 \right] + \tilde{v} \left| \chi_m (\nabla' \cdot \partial w_1' + i \xi \partial w_1^3) \right|^2 \\
&= \text{Re} \{ \langle F, \chi_m^2 \partial u_1 \rangle - I \},
\end{align*}
\] (4.56)

where
\[
I = \nu (\nabla' \partial w_1, \nabla' (\chi_m^2) \partial w_1) + \tilde{v} (\nabla' \cdot \partial w_1' + i \xi \partial w_1^3, \nabla' (\chi_m^2) \cdot \partial w_1') \\
- \left(\frac{P(\rho_s)}{\gamma^2 \rho_s} \partial \phi_1, \nabla' (\chi_m^2) \cdot \rho_s \partial w_1 \right) + (i \xi v_3^2 \partial w_1, \chi_m^2 \rho_s \partial w_1) \\
+ \left(\frac{a}{\rho_s} \Delta' v_3^2 \partial \phi_1, \chi_m^2 \partial w_1^3 \right) + (\partial w_1' \cdot \nabla' v_s^3, \chi_m^2 \rho_s \partial w_1).
\]

Let us estimate the right-hand side of (4.56). By Lemma 4.14 and the Poincaré inequality we have
\[
\text{Re} \{ F_1, \chi_m^2 \partial u_1 \} \\
\leq \left(\eta + \frac{C}{\gamma^4} \right) \eta |\phi_1|^2 + \left(\eta + \frac{C}{\gamma^4} \right) |\chi_m^2 |\phi_1|^2 + \left(\eta + \frac{C}{\gamma^4} \right) |\partial \phi_1|_2^2 \\
+ C \left(\frac{\nu^2}{\nu^2} + \frac{\nu^2}{\nu^2} + \frac{1}{\nu} + 1 \right) \tilde{B}_1 [w_1] + \frac{1}{8} \nu |\chi_m (\nabla' \partial w_1)|_2^2 + |\chi_m \partial w_1|_2^2 \\
+ \frac{1}{8} \tilde{v} |\chi_m (\nabla' \cdot \partial w_1' + i \xi \partial w_1^3)|_2^2.
\]
\[|\text{Re}| \leq (\eta + \frac{\nu}{\gamma'})|\partial_{x'} \phi_1|^2 + C \left(\frac{\nu}{\gamma'} + \frac{1}{\nu'} + \frac{1}{\gamma'} + 1 \right) \tilde{D}_{\xi}[w_1] + \frac{1}{\nu} \left(|\chi_m \nabla^2 \partial w_1|^2 + |\xi|^2 |\chi_m \partial w_1|^2 \right) \]

for any \(\eta > 0 \) with \(C \) independent of \(\eta > 0 \). By Lemma 4.6 and the Hölder inequality we deduce that

\[|\text{Re}(F_2, \chi_m \partial u_1)| \leq C \left\{ \left(\frac{1}{\nu} + \frac{\nu}{\gamma'} \right) |\xi| |\sigma|^2 + (\eta + \frac{1}{\gamma'} + \frac{1}{\nu'} + 1) |\partial_{x'} \phi_1|^2 \right\}
\]

for any \(\eta > 0 \) with \(C \) independent of \(\eta > 0 \). Therefore we see from (4.56) that if \(\nu \geq 1, \gamma^2 \geq 1 \) and \(\omega \leq 1 \), then

\[\frac{1}{\nu} \frac{d}{dt} \left(\frac{1}{\nu} |\chi_m \sqrt{\frac{\rho' \rho}{\gamma^2 \rho}} \partial \phi_1|^2 + \frac{1}{\nu} |\chi_m \nabla^2 \partial w_1|^2 \right) \leq C \left\{ \left(\frac{1}{\nu} + \frac{\nu}{\gamma'} \right) |\xi|^2 |\sigma|^2 + (\eta + \frac{1}{\gamma'} + \frac{1}{\nu'} + 1) |\partial_{x'} \phi_1|^2 \right\}
\]

(4.57)

We next estimate \(\partial \phi_1 \). The first equation of (4.55) leads to

\[\frac{1}{\nu} \frac{d}{dt} \partial \phi_1 = \frac{1}{\nu} \left(\partial \partial \phi_1 + i \xi \partial (v_3 \phi_1) \right) = \frac{1}{\nu} \tilde{F}^0 - \left\{ \frac{1}{\nu} i \xi v_3 \phi_1 + \nabla' (\rho \partial w_1) + i \xi \partial_3 w_1 \right\}.
\]

We thus have

\[\frac{1}{\nu} \left| \chi_m \partial \phi_1 \right|^2 \leq C \left\{ \frac{1}{\nu} |\xi|^2 |\sigma|^2 + \frac{1}{\nu} |\xi|^2 |\phi_1|^2 + \frac{1}{\nu} \tilde{D}_{\xi}[w_1] + |\chi_m (\nabla' \partial w_1 + i \xi \partial_3 w_1)|^2 \right\},\]

Take \(b > 0 \) suitably small and add \(b \frac{\nu + \nu'}{\gamma'} |\chi_m \partial \phi_1|^2 \) to (4.57). We thus obtain the desired estimate. This completes the proof. \(\square \)

We next derive the estimate for \(\partial \phi_1 \).

Proposition 4.16. For \(1 \leq m \leq N \), there exist constants \(\nu_0 > 0 \) and \(b > 0 \) such that if \(\nu \geq \nu_0, \gamma^2 \geq 1 \) and \(\omega \leq \omega_0 \), then there holds the estimate:

\[\frac{1}{\nu} \frac{d}{dt} \left(\frac{1}{\nu} \chi_m \sqrt{\frac{\rho' \rho}{\gamma^2 \rho}} \partial \phi_1 \right)^2 + \frac{1}{\nu} \chi_m \frac{\rho' \rho}{\gamma^2 \rho} \partial \phi_1 \right)^2 + b \frac{\nu + \nu'}{\gamma'} |\chi_m \partial \phi_1|^2 \leq C \left\{ \frac{\nu + \nu'}{\gamma'} |\xi|^2 |\sigma|^2 + \frac{\nu + \nu'}{\gamma'} |\phi_1|^2 + \frac{\nu + \nu'}{\gamma'} |\xi|^2 |\phi_1|^2 + \frac{1}{\nu} \tilde{D}_{\xi}[w_1] \right\} (4.58)\]

\[+ \frac{\nu + \nu'}{\gamma'} |\xi|^2 \tilde{D}_{\xi}[w_1] + \frac{\nu + \nu'}{\gamma'} \left(|\chi_m \partial \partial w_1|^2 + |\chi_m \partial w_1|^2 \right) + \frac{1}{\nu} \left| \chi_m \partial \partial w_1 \right|^2 \right\}.
\]

Proof. For a scalar field \(p(x') \) on \(D \cap \mathcal{O}_m \), we set

\[\tilde{p}(y') = p(x') \quad (y' = \Psi^m(x'), x' \in D \cap \mathcal{O}_m).\]

32
Similarly we transform a vector field \(h(x') = T(h^1(x'), h^2(x'), h^3(x')) \) into \(\tilde{h}(y') = T(\tilde{h}^1(y'), \tilde{h}^2(y'), \tilde{h}^3(y')) \) as

\[
h(x') = E(y')\tilde{h}(y')
\]

where \(E(y') = (e_1(y'), e_2(y'), e_3) \) with \(e_1(y_3), e_2(y_3) \) and \(e_3 \) given in (4.53). Note that, since \(e_3 = T(0, 0, 1) \), the Fourier transform in \(x_3 = y_3 \) commutes with these transformations. It then follows that \(\tilde{\phi}_1(y') \) and \(\tilde{w}_1(y') = T(\tilde{w}_1^1(y'), \tilde{w}_1^2(y'), \tilde{w}_1^3(y')) \) are governed by the following system of equations

\[
\begin{align*}
\partial_t \tilde{\phi}_1 + i \xi \tilde{v}_y^3 \tilde{\phi}_1 + (\gamma^2 \nabla_y \tilde{\rho}_s \tilde{w}_1) + i \xi \tilde{v}_y^3 \sigma \tilde{\phi}_1 + \gamma^2 i \xi \tilde{\rho}_s \sigma \tilde{w}^{(0), 3} - (Q_0 \tilde{B}_\xi (\sigma \tilde{w}^{(0)} + \tilde{u}_1)) \tilde{\phi}^{(0)} &= 0, \\
\partial_t \tilde{w}_1^1 + \frac{\mu}{\rho_s} (\mathbf{rot}_y \mathbf{rot}_y \tilde{w}_1) - \mu \xi \tilde{v}_y^3 \tilde{w}_1 + \partial_y \left(\frac{\rho_s}{\gamma^2 \rho_s} \tilde{\phi}_1 \right) &= 0, \\
\partial_t \tilde{w}_1^2 + \frac{\mu}{\rho_s} (\mathbf{rot}_y \mathbf{rot}_y \tilde{w}_1)^2 - \frac{\mu - \nu}{\rho_s} (\nabla_y \tilde{v}_y^3 \tilde{w}_1) + \frac{1}{2} \partial_y \left(\frac{\rho_s}{\gamma^2 \rho_s} \tilde{\phi}_1 \right) &= 0, \\
\partial_t \tilde{w}_1^3 + \frac{\mu}{\rho_s} (\mathbf{rot}_y \mathbf{rot}_y \tilde{w}_1)^3 - \frac{\mu - \nu}{\rho_s} (\nabla_y \tilde{v}_y^3 \tilde{w}_1)^3 + i \xi \tilde{v}_y^3 \tilde{w}_1^1 \partial_y \tilde{v}_y^3 + \frac{1}{2} \tilde{w}_1^1 \partial_y \tilde{v}_y^3 + \frac{1}{2} \tilde{w}_1^2 \partial_y \tilde{v}_y^3 + \frac{1}{2} \tilde{w}_1^3 \partial_y \tilde{v}_y^3 &= 0,
\end{align*}
\]

with \(\tilde{\rho}_s(y') = \rho_s(x'), \tilde{v}_y^3(y') = v_3(x') \) and \(\tilde{P}'(\tilde{\rho}_s(y')) = P'(\rho_s(x')) \). Here \(\nabla_y, \nabla_y \nabla_y \) and \(\mathbf{rot}_y \) denote the gradient, divergence and rotation in the curvilinear coordinate \(y \) which are written for \(\tilde{p} = \tilde{p}(y') \) and \(\tilde{h} = T(\tilde{h}^1(y'), \tilde{h}^2(y'), \tilde{h}^3(y')) \) as

\[
\begin{align*}
\nabla \tilde{p} &= e_1 \partial_{y_1} \tilde{p} + \frac{1}{f} e_2 \partial_{y_2} \tilde{p} + e_3 \partial_{y_3} \tilde{p}, \\
\mathbf{div}_y \tilde{h} &= e_1 \partial_{y_1} (\tilde{h}^1) + \partial_{y_2} \tilde{h}^2 + \partial_{y_3} (\tilde{h}^3) = 0, \\
\mathbf{rot}_y \tilde{h} &= (\mathbf{rot}_y \tilde{h})^1 e_1 + (\mathbf{rot}_y \tilde{h})^2 e_2 + (\mathbf{rot}_y \tilde{h})^3 e_3
\end{align*}
\]

with

\[
\begin{align*}
(\mathbf{rot}_y \tilde{h})^1 &= \frac{1}{2} \left\{ \partial_{y_1} \tilde{h}^3 - \partial_{y_3} (\tilde{h}^2) \right\}, \\
(\mathbf{rot}_y \tilde{h})^2 &= \partial_{y_3} \tilde{h}^1 - \partial_{y_1} \tilde{h}^3, \\
(\mathbf{rot}_y \tilde{h})^3 &= \frac{1}{2} \left\{ \partial_{y_1} \tilde{h}^2 - \partial_{y_2} (\tilde{h}^1) \right\},
\end{align*}
\]

and, therefore,

\[
\begin{align*}
(\mathbf{rot}_y \mathbf{rot}_y \tilde{h})^1 &= \frac{1}{2} \left\{ \partial_{y_2} (\mathbf{rot}_y \tilde{h})^3 - \partial_{y_3} (\mathbf{rot}_y \tilde{h})^2 \right\}, \\
(\mathbf{rot}_y \mathbf{rot}_y \tilde{h})^2 &= \partial_{y_1} (\mathbf{rot}_y \tilde{h})^1 - \partial_{y_3} (\mathbf{rot}_y \tilde{h})^3, \\
(\mathbf{rot}_y \mathbf{rot}_y \tilde{h})^3 &= \frac{1}{2} \left\{ \partial_{y_1} (\mathbf{rot}_y \tilde{h})^2 - \partial_{y_2} (\mathbf{rot}_y \tilde{h})^1 \right\};
\end{align*}
\]

the Fourier transformed gradient \(\hat{\nabla}_y \tilde{p} \) is given by

\[
\hat{\nabla}_y \tilde{p} = e_1 \partial_{y_1} \tilde{p} + \frac{1}{f} e_2 \partial_{y_2} \tilde{p} + e_3 i \xi \tilde{p};
\]
and similarly div_y and rot_y are obtained from div_y and rot_y by replacing ∂_{y_i} with $i\xi$ respectively. Applying ∂_{y_1} to the first equation of (4.59), we have

$$
\begin{align*}
&\partial_{\bar{y}_1} \bar{y}_1 + i\xi \bar{v}_3 \partial_{y_1} \bar{y}_1 + \gamma^2 \bar{\rho}_5 \partial_{y_1} \text{div}_y \bar{w}_1 \\
&= -\left\{i\xi \partial_{\bar{y}_1} \bar{v}_3 \bar{y}_1 + \gamma^2 \partial_{y_1} \left(\text{div}_y (\bar{\rho}_5 \bar{w}_1)\right) - \gamma^2 \bar{\rho}_5 \partial_{y_1} \text{div}_y \bar{w}_1
ight\} \\
&+ i\xi \partial_{y_1} \left(\bar{v}_3 \sigma \bar{\phi}^{(0)}\right) + \gamma^2 i\xi \partial_{y_1} \left(\bar{\rho}_5 \sigma \bar{w}_1 \bar{\phi}^{(0)}\right) - \left\langle Q_0 \bar{B}_5 \left(\sigma \bar{u}^{(0)} + \bar{w}_1\right)\right\rangle \partial_{y_1} \bar{\phi}^{(0)}\right\}.
\end{align*}
$$

(4.60)

To eliminate the term $\partial_{y_1} \partial_{y_1} \bar{w}_1$ in this equation, we consider $\frac{\gamma^2 \bar{\rho}_5 \partial_{y_1}}{\mu + \nu} \times (4.59) + \frac{1}{\bar{\rho}_5} \times (4.60)$. It then follows that

$$
\frac{1}{\mu} \partial_{y_1} \partial_{y_1} \bar{y}_1 + \frac{\bar{P} \cdot \bar{P}}{\gamma} \partial_{y_1} \bar{y}_1 + \frac{i\xi}{\bar{\rho}_5} i\xi \bar{v}_3 \partial_{y_1} \bar{y}_1 = I,
$$

(4.61)

where $I = I_1 + I_2$ with

$$
I_1 = -\frac{\gamma^2}{\nu + \rho} \left\{\bar{\rho}_5 \partial_{y_1} \bar{w}_1^2 + \nu \left(\text{rot}_y \text{rot}_y \bar{w}_1\right)^2\right\} \\
+ \bar{\rho}_5 \partial_{y_1} \left(\frac{\bar{P} \cdot \bar{P}}{\gamma \nu} \right) \bar{y}_1 + \frac{\nu}{\gamma} \bar{\rho}_5 \left(\Delta \bar{y}_1 \bar{v}_3\right) \bar{y}_1 + i\xi \bar{\rho}_5 \bar{v}_3 \bar{w}_1^2
$$

$$
- \left\{i\xi \frac{1}{\bar{\rho}_5} \partial_{y_1} \bar{v}_3 \bar{y}_1 + \gamma^2 \frac{1}{\bar{\rho}_5} \partial_{y_1} \left(\text{div}_y (\bar{\rho}_5 \bar{w}_1)\right) - \gamma^2 \partial_{y_1} \text{div}_y \bar{w}_1\right\},
$$

$$
I_2 = -\frac{\gamma^2}{\nu + \rho} \left\{-\nu i\xi \sigma \partial_{y_1} \bar{w}_1^{(0),3} - \left\{i\xi \frac{1}{\bar{\rho}_5} \partial_{y_1} \left(\bar{v}_3 \sigma \bar{\phi}^{(0)}\right) \\
+ \gamma^2 i\xi \frac{1}{\bar{\rho}_5} \partial_{y_1} \left(\bar{\rho}_5 \sigma \bar{w}_1 \bar{\phi}^{(0)}\right) - \frac{1}{\bar{\rho}_5} \left\langle Q_0 \bar{B}_5 \left(\sigma \bar{u}^{(0)} + \bar{w}_1\right)\right\rangle \partial_{y_1} \bar{\phi}^{(0)}\right\}.
$$

Considering $\int_{\Phi^{(m)}(D \cap \Omega_m)} (4.61) \times \bar{\chi}_m \frac{\bar{P} \cdot \bar{P}}{\gamma} \partial_{y_1} \bar{y}_1 J dy'$ with $\bar{\chi}_m(y') = \chi_m(x')$, we see that

$$
\int \frac{1}{\gamma} \left[\bar{\chi}_m \sqrt{\frac{\bar{P} \cdot \bar{P}}{\gamma \nu}} \partial_{y_1} \bar{y}_1 \right]^2_2 + \mu + \nu \int \bar{\chi}_m \frac{\bar{P} \cdot \bar{P}}{\gamma} \partial_{y_1} \bar{y}_1 \left[\partial_{y_1} \bar{y}_1 \right]^2_2 \\
= \int \Phi^{(m)}(D \cap \Omega_m) I \times \bar{\chi}_m \frac{\bar{P} \cdot \bar{P}}{\gamma} \partial_{y_1} \partial_{y_1} \bar{y}_1 J dy'.
$$

Since

$$
\left(\text{rot}_y \text{rot}_y \bar{w}_1\right)^2 = \frac{1}{2} \partial_{y_2} \left(\frac{1}{2} \partial_{y_2} \left(\bar{y}_1 \bar{w}_1^{2} \right) - \frac{1}{2} \partial_{y_2} \bar{w}_1^2\right) - i\xi (i\xi \bar{w}_1 - \partial_{y_2} \bar{w}_1^3),
$$

we obtain

$$
\frac{\nu + \rho}{\gamma} \left| \bar{\chi}_m I_1 \right|^2 \leq C \left\{ \left(\frac{\omega_1^2}{\nu + \rho} + \frac{\omega_2^2}{\gamma (\nu + \rho)}\right) \left| \bar{\chi}_m \bar{\phi}_1 \right|^2_2 + \frac{\nu + \rho}{\gamma} \left| \bar{\chi}_m \bar{\phi}_1 \right|^2_2 + \frac{1}{\nu + \rho} \left| \bar{\chi}_m \sqrt{\bar{\rho}_5} \partial_{y_1} \bar{w}_1 \right|^2_2 \\
+ (\nu + \rho) \omega_1^2 \left| \bar{\chi}_{m, \bar{w}_1} \right|^2_2 \left| \bar{\chi}_m \bar{\phi}_1 \right|^2_2 + \frac{\nu + \rho}{\gamma} \left| \bar{\chi}_m \bar{\phi}_1 \right|^2_2 \left| \bar{\chi}_m \bar{\phi}_1 \right|^2_2 \right\} + \left(\nu + \rho\right) \omega_2^2 \left| \bar{\chi}_m \bar{\phi}_1 \right|^2_2 \left| \bar{\chi}_m \bar{\phi}_1 \right|^2_2 \left| \bar{\chi}_m \partial_{y_1} \bar{w}_1 \right|^2_2 + \frac{\nu + \rho}{\gamma} \left| \bar{\chi}_m \partial_{y_1} \partial_{y_2} \bar{w}_1 \right|^2_2,
$$

$$
\frac{\nu + \rho}{\gamma} \left| \bar{\chi}_m I_2 \right|^2 \leq C \left\{ \left(\frac{\omega_1^2}{\nu + \rho} + \frac{\omega_2^2}{\gamma (\nu + \rho)}\right) \left| \bar{\chi}_m \bar{\phi}_1 \right|^2_2 + \frac{\nu + \rho}{\gamma} \left| \bar{\chi}_m \bar{\phi}_1 \right|^2_2 \right\} \left(\Phi^{(m)}(D \cap \Omega_m)\right) + (\nu + \rho) \left| \bar{\chi}_m \bar{\phi}_1 \right|^2_2 \left| \bar{\chi}_m \bar{\phi}_1 \right|^2_2
$$

(4.62)

It then follows that

$$
\frac{1}{2} \frac{d}{dt} \left[\frac{1}{\gamma} \bar{\chi}_m \sqrt{\frac{\bar{P} \cdot \bar{P}}{\gamma \nu}} \partial_{y_1} \bar{y}_1 \right]^2_2 + \frac{3}{4} \frac{1}{\nu + \rho} \left| \bar{\chi}_m \frac{\bar{P} \cdot \bar{P}}{\gamma} \partial_{y_1} \bar{y}_1 \right|^2_2 \\
\leq C \left\{ \left(\frac{\omega_1^2}{\nu + \rho} + \frac{\omega_2^2}{\gamma (\nu + \rho)}\right) \left| \bar{\chi}_m \bar{\phi}_1 \right|^2_2 + \frac{\nu + \rho}{\gamma} \left| \bar{\chi}_m \bar{\phi}_1 \right|^2_2 \right\} \left(\Phi^{(m)}(D \cap \Omega_m)\right) + (\nu + \rho) \left| \bar{\chi}_m \bar{\phi}_1 \right|^2_2 \left| \bar{\chi}_m \partial_{y_1} \bar{w}_1 \right|^2_2 + \frac{\nu + \rho}{\gamma} \left| \bar{\chi}_m \partial_{y_1} \partial_{y_2} \bar{w}_1 \right|^2_2
$$

+ \frac{1}{\nu + \rho} \left| \bar{\chi}_m \sqrt{\bar{\rho}_5} \partial_{y_1} \bar{w}_1^2 \right|^2_2.
$$

34
We next consider $\partial_{y_1} \tilde{\phi}_1$ where $\tilde{\phi}_1 = \partial_1 \phi_1 + i \xi \tilde{\phi}_1$. (4.61) gives that

$$\frac{1}{\gamma} \partial_{y_1} \tilde{\phi}_1 = \frac{1}{\gamma \rho_s} \left(I + i \xi \partial_{y_1} \tilde{\phi}_1 \right).$$

This equation leads to the estimate

$$\frac{\nu + \bar{\nu}}{\gamma} |\tilde{\chi}_m \partial_{y_1} \tilde{\phi}_1|^2 \leq C \left\{ \frac{\nu + \bar{\nu}}{\gamma} |\tilde{\chi}_m \partial_s (I + i \xi \partial_{y_1} \tilde{\phi}_1)|^2 + \frac{1}{\nu + \bar{\nu}} |\tilde{\chi}_m \frac{\tilde{P}(\rho_s)}{\gamma} \partial_{y_1} \tilde{\phi}_1|^2 \right\}.$$

Therefore if we take $b > 0$ suitably small and add $b \frac{\nu + \bar{\nu}}{\gamma} |\tilde{\chi}_m \partial_{y_1} \tilde{\phi}_1|^2$ to (4.62), we get

$$\frac{1}{2} d t \left[\frac{\nu + \bar{\nu}}{\gamma} |\tilde{\chi}_m \sqrt{\frac{\tilde{P}(p_s)}{\gamma \rho_s}} \partial_{y_1} \tilde{\phi}_1|^2 \right] + \frac{1}{2 \nu + \bar{\nu}} |\tilde{\chi}_m \frac{\tilde{P}(\rho_s)}{\gamma} \partial_{y_1} \tilde{\phi}_1|^2 + b \frac{\nu + \bar{\nu}}{\gamma} |\tilde{\chi}_m \partial_{y_1} \tilde{\phi}_1|^2 \leq C \left\{ \frac{\nu + \bar{\nu}}{\gamma} |\tilde{\chi}_m \partial_s (I + i \xi \partial_{y_1} \tilde{\phi}_1)|^2 + \frac{1}{\nu + \bar{\nu}} |\tilde{\chi}_m \frac{\tilde{P}(\rho_s)}{\gamma} \partial_{y_1} \tilde{\phi}_1|^2 \right\}.$$

The desired estimate follows from (4.63) by inverting to the original coordinates x' and noting that $\partial_{y_1} = \partial_n$, $\partial_{y_2} = \partial$. This completes the proof.

We next derive the interior estimate for the derivative of ϕ_1.

Proposition 4.17. There exist constants $\nu_0 > 0$ and $b > 0$ such that if $\nu \geq \nu_0$, $\gamma^2 \geq 1$ and $\omega \leq 1$, then there holds the estimate:

$$\frac{1}{2} d t \left[\frac{\nu + \bar{\nu}}{\gamma} \chi_0 \sqrt{\frac{P'(\rho_s)}{\gamma \rho_s}} \partial_{x'} \phi_1|^2 + |\chi_0 \sqrt{\rho_s} \partial_{x'} w_1|^2 \right] + b \frac{\nu + \bar{\nu}}{\gamma} |\chi_0 \partial_{x'} \phi_1|^2 \leq C \left\{ \left(\frac{\nu + \bar{\nu}}{\gamma} |\chi_0 \sqrt{\rho_s} \partial_{x'} w_1|^2 \right) + \frac{b}{\nu + \bar{\nu}} |\chi_0 \partial_{x'} \phi_1|^2 \right\}.$$

for any $\eta > 0$ with C independent of η.

Since supp$(\chi_0 w_1) \subset D$ we have $\partial_{x'} w_1 |_{\partial D \cap \Omega_0} = 0$. Therefore we can prove this proposition similarly to the proof of Proposition 4.15. We omit the details.

Before proceeding further we introduce an energy functional. We define $E^{(0)}_3[u_1]$ by

$$E^{(0)}_3[u_1] = \frac{1}{\gamma} \left[\chi_0 \sqrt{\frac{P'(\rho_s)}{\gamma \rho_s}} \partial_{x'} \phi_1|^2 + |\chi_0 \sqrt{\rho_s} \partial_{x'} w_1|^2 \right] + b \sum_{m=1}^N \left(\frac{1}{\gamma} \chi_m \sqrt{\frac{P'(\rho_s)}{\gamma \rho_s}} \partial_{n} \phi_1|^2 \right) + \sum_{m=1}^N \frac{1}{\gamma} \chi_m \sqrt{\frac{P'(\rho_s)}{\gamma \rho_s}} \partial_{n} \phi_1|^2.$$

35
where b_4 is a positive constant. Taking b_4 suitably large, we have the following estimate for $E_3^{(0)}[u_1]$.

Proposition 4.18. There exist constants $\nu_0 > 0$, $b > 0$ and $b_4 > 0$ such that if $\nu \geq \nu_0$, $\gamma^2 \geq 1$ and $\omega \leq 1$, then there holds the estimate:

\[
\begin{align*}
\frac{d}{dt} E_3^{(0)}[u_1] &+ b \frac{\nu^2}{\nu + \nu^2} |\partial_x \phi_1|^2 \\
&+ \frac{1}{2} \left\{ \nu \left(|\chi_0 \nabla' \partial_x w_1|^2 + |\xi|^2 |\chi_0 \partial_x \omega_1|^2 \right) + \nu |\chi_0 \partial_x w_1|^2 \right\} \\
&+ \frac{1}{2} \sum_{m=1}^N \left\{ \nu \left(|\chi_m \nabla' \partial_x w_1|^2 + |\xi|^2 |\chi_m \partial_x \omega_1|^2 \right) + \nu |\chi_m \partial_x w_1|^2 \right\} \\
&\leq C \left\{ \left(\frac{1}{\nu^2} + \frac{\nu^2}{\nu + \nu^2} \right) |\xi|^2 |\sigma|^2 + \left(\nu + \frac{\nu^2}{\nu + \nu^2} \right) |\phi_1|^2 \right\} \\
&+ \left(\frac{1}{\nu^2} + \frac{\nu^2}{\nu + \nu^2} \right) |\xi|^2 |\phi_1|^2 + \left(\nu + \frac{1}{\nu^2} \right) |\partial_x \phi_1|^2 \\
&+ \left(\frac{1}{\nu^2} + \frac{\nu^2}{\nu + \nu^2} \right) |\partial_x \phi_1|^2 \left(\frac{1}{\nu^2} + 1 \right) \mathcal{D}_\xi[w_1] + \left(\frac{1}{\nu^2} + 1 \right) |\partial_x w_1|^2 + \frac{1}{\nu^2 + \nu^2} |\partial_x w_1|^2 \right\}.
\end{align*}
\] (4.65)

for any $\eta > 0$ with C independent of η.

Using Proposition 4.15, Proposition 4.16 and Proposition 4.17, we obtain the estimate of Proposition 4.18.

We next derive a dissipative estimate for $|\partial_x^2 w_1|_2$ and $|\partial_x \phi_1|_2$.

Proposition 4.19. There exist constants $\nu_0 > 0$ and $\omega_0 > 0$ such that if $\nu \geq \nu_0$, $\omega \leq \omega_0$ and $\gamma^2 \geq 1$, then there holds the estimate:

\[
\begin{align*}
\frac{\nu^2}{\nu + \nu^2} |\partial_x^2 w_1|^2 &+ \frac{\nu^2}{\nu + \nu^2} |\partial_x \phi_1|^2 \\
&\leq C \left\{ \left(\frac{1}{\nu^2} + \frac{\nu^2}{\nu + \nu^2} \right) |\xi|^2 |\phi_1|^2 + \left(\frac{1}{\nu^2} + \frac{\nu^2}{\nu + \nu^2} \right) |\xi|^2 |\phi_1|^2 \right\} \left(\frac{1}{\nu^2} + 1 \right) \mathcal{D}_\xi[w_1] + \frac{1}{\nu^2 + \nu^2} |\partial_x w_1|^2 + \frac{\nu^2 + \nu^2}{\nu + \nu^2} |\phi_1|^2 \right\}.
\end{align*}
\] (4.66)

Proof. We first derive the estimate for $\partial_x^2 w_1$ and $\partial_x \phi_1$. We will employ the following estimate for solutions of Stokes equations. If (p, h') is the solution of

\[
\begin{align*}
\nabla' \cdot h' &= F^0, \\
-\Delta h' + \frac{1}{\nu} \nabla' p &= \frac{1}{\nu} G', \\
h' \Big|_{\partial D} &= 0,
\end{align*}
\]

then there holds

\[
|\partial_x^2 h'|_2^2 + \left|\partial_x p\right|_2^2 \leq C \left\{ |F^0|_{H^1}^2 + \frac{1}{\nu^2} |G'|_2^2 \right\}.
\] (4.67)

(See, e.g., [2, IV.6], [12, III.1.5].) By the first and second equations of (4.9), with the boundary condition of w_1', we see that (ϕ_1, w_1') satisfies the following Stokes equation

\[
\begin{align*}
\nabla' \cdot w_1' &= F^0, \\
-\Delta w_1' + \frac{1}{\nu} \nabla' \left(\frac{\nu}{\gamma^2} \phi_1 \right) &= \frac{1}{\nu} G', \\
w_1' \Big|_{\partial D} &= 0.
\end{align*}
\]
where
\[
F^0_1 = -\frac{1}{\gamma\rho_s} \{ \partial_t \phi_1 + i \xi v^3 \phi_1 + \gamma^2 (\nabla' \rho_s) \cdot w_1' + \gamma^2 i \xi w^3_1 \\
+ i \xi v^3_3 \sigma (\nabla' \cdot w_1' + i \xi w^3_1) \} + \bar{Q}_0 \bar{B}_\xi (\sigma w^{(0),3} - (Q_0 \bar{B}_\xi (\sigma u^{(0)} + u_1)) \phi^{(0)})
\]
\[
G^1_1 = -\rho_s \{ \partial_t w_1' + \frac{\nu}{\rho_s} \xi^2 w_1' - \frac{\nu}{\rho_s} (\nabla' \cdot w_1' + i \xi w^3_1) + i \xi v^3 w_1' \}
\]
\[
+ \nabla' \left(\frac{1}{\rho_s} \frac{P'(\rho_s)}{\gamma} \phi_1 - \frac{\nu}{\rho_s} i \xi \nabla'(\sigma w^{(0),3}) \right)
\]
By Lemma 4.6 and the Poincaré inequality, we have
\[
|F^0_1|^2 \leq C \left\{ \frac{1}{\gamma^4} |\xi|^2 |\sigma|^2 + \frac{1}{\gamma^4} |\phi_1|^2 + \frac{2}{\gamma^2} \bar{D}_\xi |w_1| + \frac{1}{\gamma^4} |\phi_1|^2 \right\}
\]
\[
|\partial_{\nu'} F^0_1|^2 \leq C \left\{ \frac{1}{\gamma^4} |\xi|^2 |\sigma|^2 + \frac{1}{\gamma^4} |\xi|^2 |\phi_1|^2 + \frac{2}{\gamma^2} (1 + |\xi|^2) \bar{D}_\xi |w_1| + \frac{1}{\gamma^4} |\phi_1|^2 \right\}
\]
\[
|G^1_1|^2 \leq C \left\{ \frac{\nu^2}{\gamma^4} |\xi|^2 |\sigma|^2 + (\omega^2 + \frac{\nu^2}{\gamma^2}) |\xi|^2 |\phi_1|^2 + \frac{2}{\gamma^2} \bar{D}_\xi |w_1| \right. \\
\left. + (\nu + \frac{\nu^2}{\gamma^2}) |\xi|^2 \bar{D}_\xi |w_1| + \frac{\nu^2}{\gamma^2} \bar{D}_\xi |w_1| + \sqrt{\rho_s} \partial_t w_1^3 |w_1| \right\}
\]
Since
\[
\partial_{\nu'} \left(\frac{P'(\rho_s)}{\gamma} \phi_1 \right) = \frac{P'(\rho_s)}{\gamma} \partial_{\nu'} \phi_1 + \frac{P''(\rho_s)}{\gamma^2} \partial_{\nu''} \phi_1,
\]
\[
\frac{P'(\rho_s)}{\gamma} \geq \frac{1}{2},
\]
and
\[
|\phi_1|^2 \leq C |\partial_{\nu'} \phi_1|^2
\]
by the Poincaré inequality, we see that
\[
|\partial_{\nu'} \left(\frac{P'(\rho_s)}{\gamma} \phi_1 \right)|^2 \geq C \left\{ |\partial_{\nu'} \phi_1|^2 - \omega^2 |\phi_1|^2 \right\}
\]
\[
\geq C (1 - \omega^2) |\partial_{\nu'} \phi_1|^2
\]
\[
\geq C |\partial_{\nu'} \phi_1|^2
\]
for \(\omega^2 < \frac{1}{2}\). We thus find the estimate
\[
|\partial_{\nu'}^2 w_1^3|^2 + \frac{1}{\nu^2} |\partial_{\nu''} \phi_1|^2 \leq C \left\{ \frac{\nu^2 + \nu^2}{\gamma^4} |\xi|^2 |\sigma|^2 + \frac{\nu^2}{\gamma^4} |\phi_1|^2 + (\omega^2 + \frac{\nu^2}{\gamma^2} + \frac{\nu^2}{\gamma^2}) |\xi|^2 |\phi_1|^2 \right. \\
\left. + (\nu + \frac{\nu^2}{\gamma^2}) \bar{D}_\xi |w_1| + (\nu + \frac{\nu^2}{\gamma^2}) |\xi|^2 \bar{D}_\xi |w_1| + \sqrt{\rho_s} \partial_t w_1^3 |w_1| + \nu^2 + \frac{\nu^2}{\gamma^2} |\phi_1|^2 \right\}
\]
\[\text{(4.68)}\]
We next derive the estimate for \(\partial_{\nu''}^2 w_1^3\). The third equation of (4.9), with the boundary condition of \(w_1^3\), is written as
\[
\begin{cases}
-\Delta' w_1^3 = G_1^3,
\quad \text{if } D = 0,
\end{cases}
\]
where
\[
G_1^3 = -\frac{\nu}{\rho_s} \{ \partial_t w_1^3 + \frac{\nu}{\rho_s} \xi^2 w_1^3 - \frac{\nu}{\rho_s} i \xi (\nabla' \cdot w_1' + i \xi w_1^3) \\
+ i \xi \left(\frac{P'(\rho_s)}{\gamma} \phi_1 + i \xi v_3^3 w_1^3 + \frac{\nu}{\gamma^2} \Delta' v_3^3 \phi_1 + w_1' \cdot \nabla' v_3^3 \\
+ \frac{\nu^2 + \nu^2}{\gamma^2} \xi \sigma (\nabla' \cdot w_1' + i \xi w_1^3) \right) \}
\]
\[\text{(4.70)}\]
We thus obtain
\[|w_1^2|_{L^2} \leq C|G_1^2|_{L^2}. \]

It then follows that
\[|\partial^2_{x_t}w_1^2|_{L^2} \leq C \frac{\nu}{\gamma^2} \left\{ (1 + \frac{1}{\nu}) + (\frac{\nu^2+\nu^2}{\gamma^2}) |\xi|^2 |\sigma|^2 + \frac{\nu^2}{\gamma^2} |\phi_1|^2 + (1 + \frac{1}{\nu}) |\xi|^2 |\phi_1|^2 \right\} + (\nu + \nu + \frac{1}{\nu}) \tilde{D}_c[w_1] + \frac{\nu^2}{\gamma^2} |\xi|^2 \tilde{D}_c[w_1] + |\sqrt{\gamma} \partial_t w_1|^2. \] \hspace{1cm} (4.69)

Multiplying \(\frac{\nu^2}{\gamma^2} \) to (4.68) + (4.69), we have the desired estimate. This completes the proof. \(\square \)

We are now in a position to prove Theorem 3.2.

Proposition 4.20. Let \(R > 0 \). There exist positive constants \(\nu_0, \gamma_0, \omega_0 \) and \(d \) such that if \(\nu \geq \nu_0 R^2 \), \(\frac{\nu^2}{\nu+\nu} \geq \gamma_0 R^2 \) and \(\omega \leq \omega_0 \), then for any \(l = 0, 1, \ldots \), there exists a constant \(C = C(l) > 0 \) such that the estimate
\[\|\partial_{x_t} \partial^2_{x_t} \mathcal{F}^{-1} \chi^{(R)} e^{-t \tilde{L}_c \tilde{u}_0} \|_{L^2} \leq C \{ (1+\nu)^{\frac{1}{2}} \|u_0\|_{L^1(R \cdot L^2(D))} + e^{-\frac{t}{\nu}} \} \]
holds for \(t \geq 0 \).

Proof. Let \(b_5 \) and \(b_6 \) be constants satisfying \(b_5, b_6 > 1 \). Define \(E^{(0)}_4[u] \) by
\[E^{(0)}_4[u] = b_5 \frac{\nu}{\nu+\nu} \tilde{E}^{(0)}_2[u] + b_6 E^{(0)}_3[u]. \]

If \(\gamma^2 \geq 1 \), then there exists a constant \(C > 0 \) such that
\[\frac{1}{2} \left\{ \frac{1}{\gamma^2} |\sigma|^2 + E_0[u_1] + \frac{1}{\nu} |\partial_{x_t} \phi_1|^2 + \tilde{D}_c[w_1] \right\} \]
\[\leq C E^{(0)}_4 \leq \frac{3}{2} \left\{ \frac{1}{\nu} |\sigma|^2 + E_0[u_1] + \frac{1}{\nu} |\partial_{x_t} \phi_1|^2 + \tilde{D}_c[w_1] \right\}. \]

We compute \(b_5 \frac{\nu}{\nu+\nu} \times (4.36) + b_6 \times (4.65) + b b_6 \times (4.12) + (4.66) \). It holds that
\[\begin{aligned}
\frac{1}{2} & \frac{\nu}{\nu+\nu} E^{(0)}_4[u] + \frac{\nu^2}{\nu+\nu} |\partial^2_{x_t} w_1|^2 + \frac{\nu^2}{\nu+\nu} |\partial_{x_t} \phi_1|^2 \\
+ & b_6 \frac{\nu}{\nu+\nu} \frac{\mu^2}{\nu+\nu} \tilde{D}_c[w_1] + b_6 \frac{\nu}{\nu+\nu} |\sqrt{\gamma} \partial_t w_1|^2 + b_6 \frac{\nu^2}{\nu+\nu} |\phi_1|^2 \\
+ & b_6 \left\{ \nu \left\{ |\chi_m \nabla' \cdot \partial_t w_1|^2 + |\xi|^2 \chi_m \partial_{x_t} w_1
ight\} + \tilde{D}_c[w_1] \right\} \\
+ & b_6 \sum_{m=1}^N \left\{ \nu \left\{ |\chi_m \nabla' \cdot \partial_t w_1|^2 + |\xi|^2 \chi_m \partial_{x_t} w_1
ight\} + \tilde{D}_c[w_1] \right\} \\
\leq & C \left\{ b_5 \frac{\nu}{\nu+\nu} \left(\frac{1}{\nu} + \frac{\nu^2+\nu^2}{\gamma^2} \right) |\xi|^2 |\sigma|^2 + b_5 \frac{\nu^2}{\nu+\nu} |\xi|^2 |\sigma|^2 \\
+ & b_6 \frac{\nu^2}{\nu+\nu} \left(\frac{1}{\nu} + \frac{1}{\gamma^2} \right) |\phi_1|^2 + b_6 \frac{\nu}{\nu+\nu} \frac{1}{\nu} |\xi|^2 |\phi_1|^2 + b_6 \left(\frac{1}{\nu} + \frac{\nu^2+\nu^2}{\gamma^2} \right) |\xi|^2 |\sigma|^2 \\
+ & b_6 \left(\frac{1}{\nu} + \frac{\nu^2+\nu^2}{\gamma^2} \right) |\phi_1|^2 + b_6 \left(\frac{1}{\nu} + \frac{\nu^2+\nu^2}{\gamma^2} \right) |\xi|^2 |\phi_1|^2 \\
+ & b_6 \left(\frac{1}{\nu} + \frac{\nu^2+\nu^2}{\gamma^2} \right) |\phi_1|^2 + b_6 \left(\frac{1}{\nu} + \frac{\nu^2+\nu^2}{\gamma^2} \right) |\xi|^2 |\phi_1|^2 \\
+ & b_6 \left(\frac{1}{\nu} + \frac{\nu^2+\nu^2}{\gamma^2} \right) |\phi_1|^2 + b_6 \left(\frac{1}{\nu} + \frac{\nu^2+\nu^2}{\gamma^2} \right) |\xi|^2 |\phi_1|^2 \\
+ & b_6 \left(\frac{1}{\nu} + \frac{\nu^2+\nu^2}{\gamma^2} \right) |\phi_1|^2 + b_6 \left(\frac{1}{\nu} + \frac{\nu^2+\nu^2}{\gamma^2} \right) |\xi|^2 |\phi_1|^2 \\
+ & b_6 \left(\frac{1}{\nu} + \frac{\nu^2+\nu^2}{\gamma^2} \right) |\phi_1|^2 + b_6 \left(\frac{1}{\nu} + \frac{\nu^2+\nu^2}{\gamma^2} \right) |\xi|^2 |\phi_1|^2 \\
+ & b_6 \left(\frac{1}{\nu} + \frac{\nu^2+\nu^2}{\gamma^2} \right) |\phi_1|^2 + b_6 \left(\frac{1}{\nu} + \frac{\nu^2+\nu^2}{\gamma^2} \right) |\xi|^2 |\phi_1|^2 \\
\right\}.
\end{aligned} \]
Fix $b_5 > 1$ and $b_6 > 1$ sufficiently large such that $b_6 \geq \frac{2C_4}{b}$ and $b_5 \geq 8b_6C_4$, respectively. Let us take $\eta > 0$ so small satisfying $\eta \leq \min\{1, \frac{1}{8b_6C_4}\}$. We assume that $\nu \geq \nu_0$ and $\gamma \geq \gamma_0$ are so large that $\nu \geq \nu_0 > 1$ and $\gamma^2 \geq 8b_6C_4(\nu + \nu)$. Since we have that

$$
\tilde{D}_\xi[w_1] \leq C(1 + R)|w_1|_2 \partial^2_x w_1|_2 \\
\leq \epsilon|\partial^2_x w_1|_2 + C\frac{1}{\epsilon}(1 + R)^2|w_1|_2^2
$$

for any $\epsilon > 0$, if we take ϵ sufficiently small such that $\epsilon < \frac{1}{2} \frac{\nu^2}{\nu + \nu}$, then we get

$$
\frac{d}{dt}E_4^{(0)}[u] + d(|\nabla'\phi_1|^2 + |\nabla'w_1|^2) \leq C|u|^2.
$$

Now we decompose $E_4^{(0)}[u]$ as

$$
E_4^{(0)}[u] = E_{4,0}^{(0)}[u] + E_{4,1}^{(0)}[u],
$$

where

$$
\frac{1}{2}|u|^2 \leq C E_{4,0}^{(0)}[u] \leq \frac{3}{2}|u|^2,
$$

$$
\frac{1}{2}(|\nabla'\phi_1|^2 + |\nabla'w_1|^2) \leq C E_{4,1}^{(0)}[u] \leq \frac{3}{2}(|\nabla'\phi_1|^2 + |\nabla'w_1|^2).
$$

It then follows that

$$
\frac{d}{dt} E_{4,1}^{(0)}[u](t) + d_1 E_{4,1}^{(0)}[u] + \frac{d}{2}(|\nabla'\phi_1|^2 + |\nabla'w_1|^2) \leq C|u|^2 - \frac{d}{dt} E_{4,0}^{(0)}[u](t).
$$

We thus obtain

$$
E_{4,1}^{(0)}[u](t) + \frac{d}{2} \int_0^t e^{-d_1(t-\tau)}(|\nabla'\phi_1|^2 + |\nabla'w_1|^2) d\tau \\
\leq e^{-d_1 t} E_{4,1}^{(0)}[u]_0 + C \int_0^t e^{-d_1(t-\tau)}|u|^2 d\tau - \int_0^t e^{-d_1(t-\tau)} \frac{d}{dt} E_{4,0}^{(0)}[u](\tau) d\tau.
$$

Since

$$
e^{-d_1(t-\tau)} \frac{d}{dt} E_{4,0}^{(0)}[u](\tau) = \frac{d}{dt} \left\{ e^{-d_1(t-\tau)} E_{4,0}^{(0)}[u](\tau) \right\} - \frac{1}{d_1} e^{-d_1(t-\tau)} E_{4,0}^{(0)}[u](\tau)
$$

and

$$
E_{4,0}^{(0)}[u] \leq C|u|^2,
$$

we see that

$$
E_{4,1}^{(0)}[u](t) \leq e^{-d_1 t} E_{4,0}^{(0)}[u]_0 + C \int_0^t e^{-d_1(t-\tau)}|u(\tau)|^2 d\tau.
$$

From (4.35), we obtain

$$
E_{4,1}^{(0)}[u](t) \leq e^{-d_1 t} E_{4,0}^{(0)}[u]_0 + C|u_0|^2 \int_0^t e^{-d_1(t-\tau)} e^{-d_0|\xi|^2 \tau} d\tau.
$$

39
Let us estimate the second term on the right-hand side of this inequality. We have

\[\int_0^{t/2} \exp \{-d_1(t - \tau) - d_0|\xi|^2\tau\} d\tau \leq \int_0^{t/2} \exp \{-d_1(t - \tau)\} d\tau \]
\[\leq \frac{1}{d_1} \exp \{-\frac{d_1 t}{2}\} \]
\[\leq \frac{1}{d_1} \exp \{-\frac{d_1 |\xi|^2 t}{4}\}, \]

\[\int_{t/2}^t \exp \{-d_1(t - \tau) - d_0|\xi|^2\tau\} d\tau \leq \exp \{-\frac{d_0 |\xi|^2 t}{2}\} \int_{t/2}^t \exp \{-d_1(t - \tau)\} d\tau \]
\[\leq \frac{1}{d_1} \exp \{-\frac{d_0 |\xi|^2 t}{4}\}. \]

We set \(d_2 = \min \{d_0, \frac{d_1}{R^2}\} \). It then follows that there exist positive constants \(\nu_0, \gamma_0, \omega_0, d_1 \) and \(d_2 \) such that if \(\nu \geq \nu_0 R^2 \), \(\frac{\gamma^2}{\nu + \nu} \geq \gamma_0 R^2 \) and \(\omega \leq \omega_0 \), then

\[E_{4,1}^{(0)}[u](t) \leq C \left\{ e^{-\frac{d_2 |\xi|^2 t}{2}}|u_0|^2 + e^{-d_1 t} E_4^{(0)}[u_0] \right\}. \quad (4.71) \]

Combining Proposition 4.12 and Proposition 4.20 with \(R = 1 \) we obtain the desired estimates in Theorem 3.2.

5 DECAY ESTIMATE OF THE HIGH FREQUENCY PART

In this section we will give a proof of Theorem 3.3 for \(|\xi| > R_0 \) with a positive constant \(R_0 \). To prove Theorem 3.3 for \(|\xi| > R_0 \), we will employ an energy method to obtain the estimate on solutions of

\[\partial_t u + \tilde{L}_\xi u = 0, \quad w |_{\partial \Omega} = 0, \quad u |_{t=0} = u_0 \]

similarly to Section 4. The following Propositions 5.1-5.6 can be proved in a similar manner in Section 4. So we give the statements only and omit the proofs. As in the previous section we also set

\[\omega = ||\rho_s - 1||_{C^3}. \]

Proposition 5.1. There exists a constant \(\nu_0 > 0 \) such that if \(\nu \geq \nu_0 \), then there hold the estimates:

\[\frac{1}{2} \frac{d}{dt} E_0[u] + \frac{1}{2} \tilde{D}_\xi[w] \leq C \frac{\nu}{\gamma^4} |\phi|^2, \quad (5.1) \]
\[\frac{\nu + \nu}{\gamma^4} |\phi|^2 \leq C (1 + \frac{\nu + \nu}{\nu} \omega^2) \tilde{D}_\xi[w]. \quad (5.2) \]
We proceed to estimate derivatives of u. We introduce some notations. We define $J_2^{(\infty)}[u]$ by

$$J_2^{(\infty)}[u] = -2\text{Re} \langle u, \tilde{B}_\xi \tilde{Q} u \rangle.$$

In addition, we set

$$E_2^{(\infty)}[u] = (1 + \frac{\tilde{b}_3^2}{\nu})E_0[u] + \tilde{D}_\xi[w],$$

$$\tilde{E}_2^{(\infty)}[u] = E_2^{(\infty)}[u] + J_2^{(\infty)}[u],$$

where \tilde{b}_3 is a positive constant to be determined later. We note that there exists a constant $b_3^* > 0$ such that if $\tilde{b}_3 \geq b_3^*$ and $\gamma^2 \geq 1$, then

$$\frac{1}{2}E_2^{(\infty)}[u] \leq \tilde{E}_2^{(\infty)}[u] \leq \frac{3}{2}E_2^{(\infty)}[u].$$

Taking \tilde{b}_3 suitably large, we have the following estimate for $\tilde{E}_2^{(\infty)}[u]$.

Proposition 5.2. There exist constants $\tilde{b}_3 \geq b_3^*$ and $\nu_0 > 0$ such that if $\nu \geq \nu_0$ and $\gamma^2 \geq 1$, then there holds the estimate:

$$\frac{1}{2} \frac{d}{dt} \tilde{E}_2^{(\infty)}[u] + \frac{\tilde{\nu}_3^2}{\nu} \tilde{D}_\xi[w] + \frac{1}{2} \nu \sqrt{\rho_3 w_2^2} \leq C \left\{ \left(\frac{\nu}{\gamma^2} + \nu^2 \right) |\phi|^2 + \nu \frac{1}{\gamma^2} |\xi|^2 |\phi|^2 \right\}. \tag{5.3}$$

Proposition 5.3. For $1 \leq m \leq N$, there exist constants $\nu_0 > 0$ and $b > 0$ such that if $\nu \geq \nu_0$, $\gamma^2 \geq 1$ and $\omega \leq 1$, then there holds the estimate:

$$\frac{1}{2} \frac{d}{dt} \left(\frac{1}{\gamma^2} \chi_m \sqrt{\frac{P(\rho_3)}{\gamma^2 \rho_3}} \partial_\phi \right)^2 + \frac{1}{\gamma^2} \chi_m \sqrt{\rho_3 \partial_\phi} \partial_\phi^2 + b \nu^2 |\chi_m \partial_\phi|^2$$

$$\leq C \left\{ (\eta + \frac{1}{\gamma^2}) |\phi|^2 + (\eta + \frac{1}{\gamma^2} + \nu^2) |\xi|^2 |\phi|^2 + \nu \frac{1}{\gamma^2} |\partial_\phi|^2 \right\} \tag{5.4}$$

for any $\eta > 0$ with C independent of η.

Proposition 5.4. For $1 \leq m \leq N$, there exist constants $\nu_0 > 0$ and $b > 0$ such that if $\nu \geq \nu_0$, $\gamma^2 \geq 1$ and $\omega \leq 1$, then there holds the estimate:

$$\frac{1}{2} \frac{d}{dt} \left(\frac{1}{\gamma^2} \chi_m \sqrt{\frac{P(\rho_3)}{\gamma^2 \rho_3}} \partial_\phi \right)^2 + \frac{1}{\gamma^2} \chi_m \sqrt{\rho_3 \partial_\phi} \partial_\phi^2 + b \nu^2 |\chi_m \partial_\phi|^2$$

$$\leq C \left\{ \nu^2 \frac{\nu}{\gamma^2 + \nu} |\phi|^2 + \nu^2 \frac{\nu}{\gamma^2 + \nu} |\xi|^2 |\phi|^2 + \nu \frac{1}{\gamma^2 + \nu} |\xi|^2 \tilde{D}_\xi[w] + \nu \frac{1}{\gamma^2 + \nu} |\xi|^2 \tilde{D}_\xi[w] \right\} \tag{5.5}$$

$$+ \nu^2 \frac{\nu}{\gamma^2 + \nu} (|\chi_m \partial_\phi \partial w|^2 + |\chi_m \partial^2 w|^2) + \nu \frac{1}{\gamma^2 + \nu} |\sqrt{\rho_3 \partial_\phi} w_2|^2.$$
Proposition 5.5. There exist constants $\nu_0 > 0$ and $b > 0$ such that if $\nu \geq \nu_0$, $\gamma^2 \geq 1$ and $\omega \leq 1$, then there holds the estimate:

$$\begin{align*}
\frac{1}{2} \frac{d}{dt} \left(\frac{1}{\nu} \left[\left| \chi_0 \sqrt{\frac{p'(\rho)}{\gamma^2 \rho_0^2}} \phi \right|^2 + \left| \chi_0 \sqrt{\rho_0} \partial_x \phi \right|^2 \right] \right) + b \left(\frac{e}{\nu} \right) \left| \chi_0 \partial_x \phi \right|^2 \\
+ \frac{1}{2} \nu \left(\left| \chi_0 \nabla' \cdot \phi \right|^2 + \left| \chi_0 \partial_x \phi \right|^2 \right) + \frac{1}{2} \nu \left(\left| \chi_0 \nabla' \cdot \phi \right|^2 + \left| \chi_0 \partial_x \phi \right|^2 \right) \\
\leq C \left\{ \left(\gamma + \frac{e}{\nu} \right) \left| \phi \right|^2 + \left(\gamma + \frac{e}{\nu} \right) \left| \chi_0 \partial_x \phi \right|^2 \right\} \\
+ \left(\frac{1}{\nu^2} + \frac{e}{\nu} + 1 \right) \tilde{D}_{\xi}[w]
\end{align*}$$

(5.6)

for any $\eta > 0$ with C independent of η.

Before proceeding further we introduce an energy functional. We define $E_3^{(\infty)}[u]$ by

$$
E_3^{(\infty)}[u] = \frac{1}{\nu} \left[\chi_0 \sqrt{\frac{p'(\rho)}{\gamma^2 \rho_0^2}} \partial_x \phi \right]^2 + \chi_0 \sqrt{\rho_0} \partial_x \phi \right|^2 \\
+ \tilde{b}_4 \sum_{m=1}^N \left(\left| \chi_m \sqrt{\frac{p'(\rho)}{\gamma^2 \rho_0^2}} \partial_{\gamma} \phi \right|^2 + \chi_m \sqrt{\rho_0} \partial_{\gamma} \phi \right|^2 \right) + \sum_{m=1}^N \left(\frac{1}{\rho_0} \left| \chi_m \sqrt{\frac{p'(\rho)}{\gamma^2 \rho_0^2}} \partial_{\gamma} \phi \right|^2 \right),
$$

where \tilde{b}_4 is a positive constant. Taking \tilde{b}_4 suitably large, we have the following estimate for $E_3^{(\infty)}[u]$.

Proposition 5.6. There exist constants $\nu_0 > 0$, $b > 0$ and $\tilde{b}_4 > 0$ such that if $\nu \geq \nu_0$, $\gamma^2 \geq 1$ and $\omega \leq 1$, then there holds the estimate:

$$\begin{align*}
\frac{1}{2} \frac{d}{dt} E_3^{(\infty)}[u] + b \left(\frac{e}{\nu} \right) \left| \chi_0 \partial_x \phi \right|^2 \\
+ \frac{1}{2} \nu \left(\left| \chi_0 \nabla' \cdot \phi \right|^2 + \left| \chi_0 \partial_x \phi \right|^2 \right) + \tilde{B}_4 \left(\chi_0 \nabla' \cdot \phi \right) \\
+ \frac{1}{2} \sum_{m=1}^N \left\{ \nu \left(\left| \chi_m \nabla' \partial_{\gamma} \phi \right|^2 + \left| \chi_m \partial_{\gamma} \phi \right|^2 \right) + \tilde{B}_4 \left(\chi_m \nabla' \partial_{\gamma} \phi \right) \\
\leq C \left\{ \left(\gamma + \frac{e}{\nu} \right) \left| \phi \right|^2 + \left(\gamma + \frac{e}{\nu} \right) \left| \chi_0 \partial_x \phi \right|^2 \right\} \\
+ \left(\gamma + \frac{e}{\nu} \right) \left| \phi \right|^2 + \left(\gamma + \frac{e}{\nu} \right) \left| \chi_0 \partial_x \phi \right|^2 \\
+ \left(\frac{1}{\nu^2} + \frac{e}{\nu} + 1 \right) \tilde{D}_{\xi}[w] \\
+ \left(\frac{1}{\nu^2} + \frac{e}{\nu} \right) \left| \chi_0 \partial_x \phi \right|^2 \right\}
\end{align*}$$

(5.7)

for any $\eta > 0$ with C independent of η.

We do not have the estimate for ϕ such as $|\phi|_2 \leq C|\partial_x \phi|_2$ similar to that for ϕ_1 in Section 4. We thus use the estimate for a solution of the Fourier transformed Stokes equation of the case $|\xi|^2 \gg 1$.

Proposition 5.7. Assume that $(p, h) \in H^1(D) \times H^2(D)$ is a solution of the following Stokes equation

$$
\begin{align*}
\nabla' \cdot h' + i \xi h^3 &= F^0, \\
(|\xi|^2 - \Delta') h' + \frac{1}{p} \partial_x p &= \frac{1}{p} G', \\
|\xi|^2 - \Delta' h^3 + \frac{1}{p} \partial_x p &= \frac{1}{p} G^3, \\
h |_{\partial D} &= 0.
\end{align*}
$$

42
There exist a constant $R_0 = R_0(D) > 0$ such that if $|\xi| \geq R_0$, then there holds the following estimate:

\[
\frac{1}{\nu^2} |p|^2 + \frac{1}{\nu^2} |\xi|^2 |p|^2 + \frac{1}{\nu^2} |\partial_x p|^2 \\
+ |h|^2 + |\xi|^2 |h|^2 + |\partial_x h|^2 + \sum_{j=0}^{2} |\xi|^{2j} |\partial_x^{2j} h|^2 \\
\leq C R_0^2 \left\{ |F|^2 + |\xi|^2 |F|^2 + |\partial_x F|^2 + \frac{1}{\nu^2} |G|^2 + |\partial_x h|^2 \right\},
\]

where C is a positive constant independent of $|\xi|$.

Proposition 5.7 can be proved similarly to the proof of Kagei [5, Lemma 6.6] and we omit the proof. Applying Proposition 5.7, we have the following estimate.

Proposition 5.8. There exist constant $\nu_0 > 0$ such that if $\nu \geq \nu_0$, $\gamma^2 \geq 1$ and $\omega \leq 1$, then there holds the estimate:

\[
\frac{1}{\nu^{\omega+\nu}} \left(|\phi|^2 + |\xi|^2 |\phi|^2 + |\partial_x \phi|^2 \right) \\
+ \frac{\nu^2}{\nu^2 + \nu} \left(|w|^2 + |\xi|^2 |w|^2 + |\partial_x w|^2 + \sum_{j=0}^{2} |\xi|^{2j} |\partial_x^{2j} w|^2 \right) \\
\leq C R_0^2 \left\{ \left(\frac{\nu^2}{\nu^2 + \nu} + \frac{\nu^2}{\nu^2 + \nu} \right) |\phi|^2 + \frac{\nu}{\nu^2 + \nu} \tilde{D}_x [w] \\
+ \frac{\nu^2}{\nu^2 + \nu} \left(|\phi|^2 + |\xi|^2 |\phi|^2 + |\partial_x \phi|^2 \right) + \frac{1}{\nu^2 + \nu} |\sqrt{\rho} \partial_x w|^2 \right\}
\] (5.8)

for $|\xi| \geq R_0$, where R_0 is the constant given in Proposition 5.7 and C is a positive constant independent of $|\xi|$.

Proof. We observe that (ϕ, w) satisfies the following Stokes equation

\[
\begin{align*}
\nabla' \cdot w' + i\xi w^3 &= F^0, \\
(\xi^2 - \Delta') w' + \frac{1}{\nu} \nabla' \left(\frac{P'(\rho_s)}{\gamma} \phi \right) &= \frac{1}{\nu} G', \\
(\xi^2 - \Delta') w^3 + \frac{1}{\nu} i\xi \frac{P'(\rho_s)}{\gamma} \phi &= \frac{1}{\nu} G^3, \\
w \mid_{\partial D} &= 0,
\end{align*}
\]

where

\[
F^0 = -\frac{1}{\rho_s} \left\{ \partial_t \phi + i\xi v_s^3 \phi + (\nabla' \rho_s) \cdot w \right\},
\]
\[
G' = -\rho_s \left\{ \partial_t w' - \frac{2}{\rho_s} \nabla' (\nabla' \cdot w' + i\xi w^3) - \frac{P'(\rho_s)}{\gamma \rho_s} \phi \nabla' \rho_s + i\xi v_s^3 w' \right\},
\]
\[
G^3 = -\rho_s \left\{ \partial_t w^3 - \frac{2}{\rho_s} i\xi (\nabla' \cdot w' + i\xi w^3) + i\xi v_s^3 w^3 + \frac{P}{\gamma \rho_s} \Delta' v_s^3 \phi + w' \cdot \nabla' v_s^3 \right\}.
\]

Therefore we get the desired estimate from Proposition 5.7. This completes the proof. \qed

We finally prove Theorem 3.3.

43
Proof of Theorem 3.3 Let \(\tilde{b}_5, \tilde{b}_6 \) and \(\tilde{b}_7 \) be constants satisfying \(\tilde{b}_5, \tilde{b}_6, \tilde{b}_7 > 1 \). Define \(\tilde{E}_4^{(\infty)}[u] \) by

\[
\tilde{E}_4^{(\infty)}[u] = \tilde{b}_5 E_3^{(\infty)}[u] + \frac{\tilde{b}_6}{\nu + \nu'} \tilde{E}_2^{(\infty)}[u] + \tilde{b}_7 (1 + \frac{\nu}{\nu'}) (1 + |\xi|^2) E_0[u].
\]

We compute (5.8) + \(\tilde{b}_5 \times \{ (5.7) + b_{\nu + \nu'} (1 + |\xi|^2) |\phi|^2 \} + \frac{\tilde{b}_6}{\nu + \nu'} \times (5.3) + \tilde{b}_7 (1 + \frac{\nu}{\nu'}) (1 + |\xi|^2) \times (5.1) \) then

\[
\frac{1}{2} \frac{d}{dt} \tilde{E}_4^{(\infty)}[u] + \frac{\nu^2}{\nu + \nu'} \left(|w|^2 + |\xi|^2 |w|^2 + |\partial_{x'}w|^2 + \sum_{j=0}^{2} |\xi|^2 |\partial_{x'}^j w|^2 \right)
\]

\[
+ \frac{1}{\nu + \nu'} \left(|\phi|^2 + |\xi|^2 |\phi|^2 + |\partial_{x'} \phi|^2 + \tilde{b}_6 \frac{\nu^2}{\nu + \nu'} \left(|\phi|^2 + |\xi|^2 |\phi|^2 + |\partial_{x'} \phi|^2 \right) + \tilde{b}_7 (1 + \frac{\nu}{\nu'}) (1 + |\xi|^2)^2 \right)
\]

\[
+ \frac{\tilde{b}_5}{\nu + \nu'} \left\{ \nu \left(|\partial_{x'} \partial_{x''} w|^2 + |\xi|^2 |\partial_{x'} \partial_{x''} w|^2 \right) + \tilde{v} |\partial_{x'} \partial_{x''} w|^2 + i \tilde{v} |\partial_{x'} \partial_{x''} w|^2 \right\}
\]

\[
+ \frac{\tilde{b}_5}{\nu + \nu'} \sum_{m=1}^{\tilde{c}_2} \left\{ \nu \left(|\partial_{x'} \partial_{x''} w|^2 + \xi \partial_{x'} \partial_{x''} w|^2 + i \xi \partial_{x'} \partial_{x''} w|^2 \right) \right\}
\]

\[
+ \frac{\tilde{b}_5}{\nu + \nu'} \left(1 + |\xi|^2 \right) \tilde{D}_\xi[w] - \tilde{b}_6 \frac{\nu^2}{\nu + \nu'} |\xi|^2 |\phi|^2 + \tilde{b}_7 \frac{\nu^2}{\nu + \nu'} \left(1 + |\xi|^2 \right) |\phi|^2 \right)
\]

Fix \(\tilde{b}_5 > 1, \tilde{b}_6 > 1 \) and \(\tilde{b}_7 > 1 \) so large that \(\tilde{b}_5 \geq \frac{2\tilde{c}_2}{\nu_0} R_0^2, \tilde{b}_6 \geq 8\tilde{C}_4 \max\{R_0^2, \tilde{b}_5\} \) and \(\tilde{b}_7 > 20\tilde{C}_4 \max\{R_0^2, \tilde{b}_6, \tilde{b}_5\} \), respectively. We take \(\eta > 0 \) and \(\omega > 0 \) sufficiently small such that \(\eta < \frac{1}{20\tilde{C}_4 \nu + \nu'} \) and \(\omega^2 < \frac{1}{20\tilde{C}_4} \min\{ \frac{\tilde{b}_7}{\nu_0}, \frac{1}{\tilde{b}_6} \} \), respectively. We assume that \(\nu \geq \nu_0 \) and \(\gamma \geq \gamma_0 \) are large enough such that \(\nu \geq \nu_0 > 1 \) and \(\gamma^2 > 20\tilde{C}_4 \max\{R_0\nu + \nu', (\tilde{b}_5 \frac{\nu^2}{\nu + \nu'})^2, \sqrt{\tilde{b}_7 (\nu + \nu')} \} \). We then arrive at the estimate

\[
\frac{d}{dt} \tilde{E}_4^{(\infty)}[u] + \frac{\nu^2}{\nu + \nu'} \left(|w|^2 + |\xi|^2 |w|^2 + |\partial_{x'}w|^2 + \sum_{j=1}^{2} |\xi|^2 |\partial_{x'}^j w|^2 \right)
\]

\[
+ \frac{1}{\nu + \nu'} \left(|\phi|^2 + |\xi|^2 |\phi|^2 + |\partial_{x'} \phi|^2 + \nu \left(|\partial_{x'} \partial_{x''} w|^2 + |\xi|^2 |\partial_{x'} \partial_{x''} w|^2 \right) + \tilde{v} |\partial_{x'} \partial_{x''} w|^2 + i \tilde{v} |\partial_{x'} \partial_{x''} w|^2 \right)
\]

\[
+ \nu \left(|\partial_{x'} \partial_{x''} w|^2 + |\xi|^2 |\partial_{x'} \partial_{x''} w|^2 \right) + \tilde{v} |\partial_{x'} \partial_{x''} w|^2 + i \tilde{v} |\partial_{x'} \partial_{x''} w|^2 \right)
\]

\[
+ \sum_{m=1}^{\tilde{c}_2} \left\{ \nu \left(|\partial_{x'} \partial_{x''} w|^2 + |\xi|^2 |\partial_{x'} \partial_{x''} w|^2 \right) + \tilde{v} |\partial_{x'} \partial_{x''} w|^2 + i \tilde{v} |\partial_{x'} \partial_{x''} w|^2 \right\}
\]

\[
+ \frac{1}{\nu + \nu'} \left(1 + |\xi|^2 \right) \tilde{D}_\xi[w] - \tilde{b}_6 \frac{\nu^2}{\nu + \nu'} |\xi|^2 |\phi|^2 + \tilde{b}_7 \frac{\nu^2}{\nu + \nu'} \left(1 + |\xi|^2 \right) |\phi|^2 \right)
\]

\[
\leq 0
\]

for all \(\xi \in \mathbb{R} \) with \(|\xi| \geq R_0 \). We define \(E_4^{(\infty)}[u] \) by

\[
E_4^{(\infty)}[u] = |\phi|^2 + |\xi|^2 |\phi|^2 + |\partial_{x'} \phi|^2 + |\partial_{x'} \partial_{x''} w|^2 + |\xi|^2 |\partial_{x'} \partial_{x''} w|^2 + |\partial_{x'} w|^2.
\]
Since
\[
\frac{1}{2} \left\{ (1 + \frac{\nu^2}{\nu}) E_0[u] + \tilde{D}_\xi[w] \right\} \leq \tilde{E}_2^{(\infty)}[u] \leq \frac{3}{2} \left\{ (1 + \frac{\nu^2}{\nu}) E_0[u] + \tilde{D}_\xi[w] \right\},
\]
\[
\frac{1}{2} \frac{1}{\gamma^2} |\partial_x \phi|^2 \leq \tilde{C}_5 E_3^{(\infty)}[u] \leq \frac{3}{2} \left(\frac{1}{\gamma^2} |\partial_x \phi|^2 + |\partial_x w|^2 \right)
\]
for a positive constant \(\tilde{C}_5 \), we see that
\[
\frac{1}{2} E_4^{(\infty)}[u] \leq \tilde{C}_6 \tilde{E}_4^{(\infty)}[u] \leq \frac{3}{2} E_4^{(\infty)}[u]
\]
for a positive constant \(\tilde{C}_6 \). We thus see that there exist positive constants \(\nu_0, \gamma_0, \omega_0 \) and \(d \) such that if \(\nu \geq \nu_0, \frac{\nu^2}{\nu + \rho} \geq \gamma_0^2 R_0^2 \) and \(\omega \leq \omega_0 R_0^{-2} \), then
\[
E_4^{(\infty)}[u](t) \leq C e^{-dt} E_4^{(\infty)}[u_0].
\]
This gives the desired estimate in Theorem 3.3 for \(|\xi| \geq R_0 \). For \(1 \leq |\xi| \leq R_0 \), we obtain the desired estimate from (4.71) with \(R = R_0 \). This completes the proof. \(\square \)

References

List of MI Preprint Series, Kyushu University
The Global COE Program
Math-for-Industry Education & Research Hub

MI

MI2008-1 Takahiro ITO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Abstract collision systems simulated by cellular automata

MI2008-2 Eiji ONODERA
The initial value problem for a third-order dispersive flow into compact almost Hermitian manifolds

MI2008-3 Hiroaki KIDO
On isosceles sets in the 4-dimensional Euclidean space

MI2008-4 Hirofumi NOTSU
Numerical computations of cavity flow problems by a pressure stabilized characteristic-curve finite element scheme

MI2008-5 Yoshiyasu OZEKI
Torsion points of abelian varieties with values in infinite extensions over a p-adic field

MI2008-6 Yoshiyuki TOMIYAMA
Lifting Galois representations over arbitrary number fields

MI2008-7 Takehiro HIROTSU & Setsuo TANIGUCHI
The random walk model revisited

MI2008-8 Silvia GANDY, Masaaki KANNO, Hirokazu ANAI & Kazuhiro YOKOYAMA
Optimizing a particular real root of a polynomial by a special cylindrical algebraic decomposition

MI2008-9 Kazufumi KIMOTO, Sho MATSUMOTO & Masato WAKAYAMA
Alpha-determinant cyclic modules and Jacobi polynomials

MI2008-10 Sangyeol LEE & Hiroki MASUDA
Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Observed Univariate SDE

MI2008-11 Hiroyuki CHIHARA & Eiji ONODERA
A third order dispersive flow for closed curves into almost Hermitian manifolds

MI2008-12 Takehiko KINOSHITA, Kouji HASHIMOTO and Mitsuo T. NAKAO
On the L^2 a priori error estimates to the finite element solution of elliptic problems with singular adjoint operator

MI2008-13 Jacques FARAUT and Masato WAKAYAMA
Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek polynomials
Takashi NAKAMURA
Riemann zeta-values, Euler polynomials and the best constant of Sobolev inequality

Takashi NAKAMURA
Some topics related to Hurwitz-Lerch zeta functions

Yasuhide FUKUMOTO
Global time evolution of viscous vortex rings

Hidetoshi MATSUI & Sadanori KONISHI
Regularized functional regression modeling for functional response and predictors

Hidetoshi MATSUI & Sadanori KONISHI
Variable selection for functional regression model via the L_1 regularization

Shuichi KAWANO & Sadanori KONISHI
Nonlinear logistic discrimination via regularized Gaussian basis expansions

Toshiro HIRANOUCHI & Yuichiro TAGUCHII
Flat modules and Groebner bases over truncated discrete valuation rings

Kenji KAJIWARA & Yasuhiro OHTA
Bilinearization and Casorati determinant solutions to non-autonomous 1+1 dimensional discrete soliton equations

Yoshiyuki KAGEI
Asymptotic behavior of solutions of the compressible Navier-Stokes equation around the plane Couette flow

Shohei TATEISHI, Hidetoshi MATSUI & Sadanori KONISHI
Nonlinear regression modeling via the lasso-type regularization

Takeshi TAKAISHI & Masato KIMURA
Phase field model for mode III crack growth in two dimensional elasticity

Shingo SAITO
Generalisation of Mack’s formula for claims reserving with arbitrary exponents for the variance assumption

Kenji KAJIWARA, Masanobu KANEKO, Atsushi NOBE & Teruhisa TSUDA
Ultradiscretization of a solvable two-dimensional chaotic map associated with the Hesse cubic curve

Tetsu MASUDA
Hypergeometric τ -functions of the q-Painlevé system of type $E_8^{(1)}$

Hidenao IWANE, Hitoshi YANAMI, Hirokazu ANAI & Kazuhiro YOKOYAMA
A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic Decomposition for Quantifier Elimination

Yasunori MAEKAWA
On Gaussian decay estimates of solutions to some linear elliptic equations and its applications
Yuya ISHIHARA & Yoshiyuki KAGEI
Large time behavior of the semigroup on L^p spaces associated with the linearized compressible Navier-Stokes equation in a cylindrical domain

Chikashi ARITA, Atsuo KUNIBA, Kazumitsu SAKAI & Tsuyoshi SAWABE
Spectrum in multi-species asymmetric simple exclusion process on a ring

Masato WAKAYAMA & Keitaro YAMAMOTO
Non-linear algebraic differential equations satisfied by certain family of elliptic functions

Me Me NAING & Yasuhide FUKUMOTO
Local Instability of an Elliptical Flow Subjected to a Coriolis Force

Mitsunori KAYANO & Sadanori KONISHI
Sparse functional principal component analysis via regularized basis expansions and its application

Shuichi KAWANO & Sadanori KONISHI
Semi-supervised logistic discrimination via regularized Gaussian basis expansions

Hiroshi YOSHIDA, Yoshihiro MIWA & Masanobu KANEKO
Elliptic curves and Fibonacci numbers arising from Lindenmayer system with symbolic computations

Eiji ONODERA
A remark on the global existence of a third order dispersive flow into locally Hermitian symmetric spaces

Stjepan LUGOMER & Yasuhide FUKUMOTO
Generation of ribbons, helicoids and complex scherk surface in laser-matter Interactions

Yu KAWAKAMI
Recent progress in value distribution of the hyperbolic Gauss map

Takehiko KINOSHITA & Mitsuhiro T. NAKAO
On very accurate enclosure of the optimal constant in the a priori error estimates for H_0^2-projection

Manabu YOSHIDA
Ramification of local fields and Fontaine’s property (Pm)

Yu KAWAKAMI
Value distribution of the hyperbolic Gauss maps for flat fronts in hyperbolic three-space

Masahisa TABATA
Numerical simulation of fluid movement in an hourglass by an energy-stable finite element scheme

Yoshiyuki KAGEI & Yasunori MAEKAWA
Asymptotic behaviors of solutions to evolution equations in the presence of translation and scaling invariance
MI2009-30 Yoshiyuki KAGEI & Yasunori MAEKAWA
On asymptotic behaviors of solutions to parabolic systems modelling chemotaxis

MI2009-31 Masato WAKAYAMA & Yoshinori YAMASAKI
Hecke’s zeros and higher depth determinants

MI2009-32 Olivier PIRONNEAU & Masahisa TABATA
Stability and convergence of a Galerkin-characteristics finite element scheme of lumped mass type

MI2009-33 Chikashi ARITA
Queueing process with excluded-volume effect

MI2009-34 Kenji KAJIWARA, Nobutaka NAKAZONO & Teruhisa TSUDA
Projective reduction of the discrete Painlevé system of type$(A_2 + A_1)^{(1)}$

MI2009-35 Yosuke MIZUYAMA, Takamasah SHINDE, Masahisa TABATA & Daisuke TAGAMI
Finite element computation for scattering problems of micro-hologram using DtN map

MI2009-36 Reiichiro KAWAI & Hiroki MASUDA
Exact simulation of finite variation tempered stable Ornstein-Uhlenbeck processes

MI2009-37 Hiroki MASUDA
On statistical aspects in calibrating a geometric skewed stable asset price model

MI2010-1 Hiroki MASUDA
Approximate self-weighted LAD estimation of discretely observed ergodic Ornstein-Uhlenbeck processes

MI2010-2 Reiichiro KAWAI & Hiroki MASUDA
Infinite variation tempered stable Ornstein-Uhlenbeck processes with discrete observations

MI2010-3 Kei HIROSE, Shuichi KAWANO, Daisuke MIIKE & Sadanori KONISHI
Hyper-parameter selection in Bayesian structural equation models

MI2010-4 Nobuyuki IKEDA & Setsuo TANIGUCHI
The Itô-Nisio theorem, quadratic Wiener functionals, and 1-solitons

MI2010-5 Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling and detecting change point via the relevance vector machine

MI2010-6 Shuichi KAWANO, Toshihiro MISUMI & Sadanori KONISHI
Semi-supervised logistic discrimination via graph-based regularization

MI2010-7 Teruhisa TSUDA
UC hierarchy and monodromy preserving deformation

MI2010-8 Takahiro ITO
Abstract collision systems on groups
MI2010-9 Hiroshi YOSHIDA, Kinji KIMURA, Naoki YOSHIDA, Junko TANAKA & Yoshihiro MIWA
An algebraic approach to underdetermined experiments

MI2010-10 Kei HIROSE & Sadanori KONISHI
Variable selection via the grouped weighted lasso for factor analysis models

MI2010-11 Katsusuke NABESHIMA & Hiroshi YOSHIDA
Derivation of specific conditions with Comprehensive Groebner Systems

MI2010-12 Yoshiyuki KAGEI, Yu NAGAFUCHI & Takeshi SUDOU
Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Poiseuille type flow

MI2010-13 Reiichiro KAWAI & Hiroki MASUDA
On simulation of tempered stable random variates

MI2010-14 Yoshiyasu OZEKI
Non-existence of certain Galois representations with a uniform tame inertia weight

MI2010-15 Me Me NAING & Yasuhide FUKUMOTO
Local Instability of a Rotating Flow Driven by Precession of Arbitrary Frequency

MI2010-16 Yu KAWAKAMI & Daisuke NAKAJO
The value distribution of the Gauss map of improper affine spheres

MI2010-17 Kazunori YASUTAKE
On the classification of rank 2 almost Fano bundles on projective space

MI2010-18 Toshimitsu TAKAESU
Scaling limits for the system of semi-relativistic particles coupled to a scalar bose field

MI2010-19 Reiichiro KAWAI & Hiroki MASUDA
Local asymptotic normality for normal inverse Gaussian Lévy processes with high-frequency sampling

MI2010-20 Yasuhide FUKUMOTO, Makoto HIROTA & Youichi MIE
Lagrangian approach to weakly nonlinear stability of an elliptical flow

MI2010-21 Hiroki MASUDA
Approximate quadratic estimating function for discretely observed Lévy driven SDEs with application to a noise normality test

MI2010-22 Toshimitsu TAKAESU
A Generalized Scaling Limit and its Application to the Semi-Relativistic Particles System Coupled to a Bose Field with Removing Ultraviolet Cutoffs

MI2010-23 Takahiro ITO, Mitsuhiko FUJIO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Composition, union and division of cellular automata on groups

MI2010-24 Toshimitsu TAKAESU
A Hardy’s Uncertainty Principle Lemma in Weak Commutation Relations of Heisenberg-Lie Algebra
MI2010-25 Toshimitsu TAKAESU
On the Essential Self-Adjointness of Anti-Commutative Operators

MI2010-26 Reiichiro KAWAI & Hiroki MASUDA
On the local asymptotic behavior of the likelihood function for Meixner Lévy processes under high-frequency sampling

MI2010-27 Chikashi ARITA & Daichi YANAGISAWA
Exclusive Queuing Process with Discrete Time

MI2010-28 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA & Yasuhiro OHTA
Motion and Bäcklund transformations of discrete plane curves

MI2010-29 Takanori YASUDA, Masaya YASUDA, Takeshi SHIMOYAMA & Jun KOGURE
On the Number of the Pairing-friendly Curves

MI2010-30 Chikashi ARITA & Kohei MOTEGI
Spin-spin correlation functions of the q-VBS state of an integer spin model

MI2010-31 Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling and spike detection via Gaussian basis expansions

MI2010-32 Nobutaka NAKAZONO
Hypergeometric τ functions of the q-Painlevé systems of type $(A_2 + A_1)^{(1)}$

MI2010-33 Yoshiyuki KAGEI
Global existence of solutions to the compressible Navier-Stokes equation around parallel flows

MI2010-34 Nobushige KUROKAWA, Masato WAKAYAMA & Yoshinori YAMASAKI
Milnor-Selberg zeta functions and zeta regularizations

MI2010-35 Kissani PERERA & Yoshihiro MIZOGUCHI
Laplacian energy of directed graphs and minimizing maximum outdegree algorithms

MI2010-36 Takanori YASUDA
CAP representations of inner forms of $Sp(4)$ with respect to Klingen parabolic subgroup

MI2010-37 Chikashi ARITA & Andreas SCHADSCHNEIDER
Dynamical analysis of the exclusive queueing process

MI2011-1 Yasuhide FUKUMOTO & Alexander B. SAMOKHIN
Singular electromagnetic modes in an anisotropic medium

MI2011-2 Hiroki KONDO, Shingo SAITO & Setsuo TANIGUCHI
Asymptotic tail dependence of the normal copula

MI2011-3 Takehiro HIROTsu, Hiroki KONDO, Shingo SAITO, Takuya SATO, Tatsushi TANAKA & Setsuo TANIGUCHI
Anderson-Darling test and the Malliavin calculus

MI2011-4 Hiroshi INOUE, Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling via Compressed Sensing
MI2011-5 Hiroshi INOUE
Implications in Compressed Sensing and the Restricted Isometry Property

MI2011-6 Daeju KIM & Sadanori KONISHI
Predictive information criterion for nonlinear regression model based on basis expansion methods

MI2011-7 Shohei TATEISHI, Chiaki KINJYO & Sadanori KONISHI
Group variable selection via relevance vector machine

MI2011-8 Jan BREZINA & Yoshiyuki KAGEI
Decay properties of solutions to the linearized compressible Navier-Stokes equation around time-periodic parallel flow
Group variable selection via relevance vector machine

MI2011-9 Chikashi ARITA, Arvind AYYER, Kirone MALLICK & Sylvain PROLHAC
Recursive structures in the multispecies TASEP

MI2011-10 Kazunori YASUTAKE
On projective space bundle with nef normalized tautological line bundle

MI2011-11 Hisashi ANDO, Mike HAY, Kenji KAJIWARA & Tetsu MASUDA
An explicit formula for the discrete power function associated with circle patterns of Schramm type

MI2011-12 Yoshiyuki KAGEI
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a parallel flow

MI2011-13 Vladimír CHALUPECKÝ & Adrian MUNTEAN
Semi-discrete finite difference multiscale scheme for a concrete corrosion model: approximation estimates and convergence

MI2011-14 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA & Yasuhiro OHTA
Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves

MI2011-15 Hiroshi INOUE
A generalization of restricted isometry property and applications to compressed sensing

MI2011-16 Yu KAWAKAMI
A ramification theorem for the ratio of canonical forms of flat surfaces in hyperbolic three-space

MI2011-17 Naoyuki KAMIYAMA
Matroid intersection with priority constraints

MI2012-1 Kazufumi KIMOTO & Masato WAKAYAMA
Spectrum of non-commutative harmonic oscillators and residual modular forms

MI2012-2 Hiroki MASUDA
Mighty convergence of the Gaussian quasi-likelihood random fields for ergodic Levy driven SDE observed at high frequency
MI2012-3 Hiroshi INOUE
A Weak RIP of theory of compressed sensing and LASSO

MI2012-4 Yasuhide FUKUMOTO & Youich MIE
Hamiltonian bifurcation theory for a rotating flow subject to elliptic straining field

MI2012-5 Yu KAWAKAMI
On the maximal number of exceptional values of Gauss maps for various classes of surfaces

MI2012-6 Marcio GAMEIRO, Yasuaki HIRAOKA, Shunsuke IZUMI, Miroslav KRAMAR, Konstantin MISCHAIKOW & Vidit NANDA
Topological Measurement of Protein Compressibility via Persistence Diagrams

MI2012-7 Nobutaka NAKAZONO & Seiji NISHIOKA
Solutions to a q-analog of Painlevé III equation of type $D_7^{(1)}$

MI2012-8 Naoyuki KAMIYAMA
A new approach to the Pareto stable matching problem

MI2012-9 Jan BREZINA & Yoshiyuki KAGEI
Spectral properties of the linearized compressible Navier-Stokes equation around time-periodic parallel flow

MI2012-10 Jan BREZINA
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a time-periodic parallel flow

MI2012-11 Daeju KIM, Shuichi KAWANO & Yoshiyuki NINOMIYA
Adaptive basis expansion via the extended fused lasso

MI2012-12 Masato WAKAYAMA
On simplicity of the lowest eigenvalue of non-commutative harmonic oscillators

MI2012-13 Masatoshi OKITA
On the convergence rates for the compressible Navier-Stokes equations with potential force

MI2013-1 Abuduwaili PAERHATI & Yasuhide FUKUMOTO
A Counter-example to Thomson-Tait-Chetayev’s Theorem

MI2013-2 Yasuhide FUKUMOTO & Hirofumi SAKUMA
A unified view of topological invariants of barotropic and baroclinic fluids and their application to formal stability analysis of three-dimensional ideal gas flows

MI2013-3 Hiroki MASUDA
Asymptotics for functionals of self-normalized residuals of discretely observed stochastic processes

MI2013-4 Naoyuki KAMIYAMA
On Counting Output Patterns of Logic Circuits

MI2013-5 Hiroshi INOUE
RIPless Theory for Compressed Sensing
MI2013-6 Hiroshi INOUE
Improved bounds on Restricted isometry for compressed sensing

MI2013-7 Hidetoshi MATSUI
Variable and boundary selection for functional data via multiclass logistic regression modeling

MI2013-8 Hidetoshi MATSUI
Variable selection for varying coefficient models with the sparse regularization

MI2013-9 Naoyuki KAMIYAMA
Packing Arborescences in Acyclic Temporal Networks

MI2013-10 Masato WAKAYAMA
Equivalence between the eigenvalue problem of non-commutative harmonic oscillators and existence of holomorphic solutions of Heun’s differential equations, eigenstates degeneration, and Rabi’s model

MI2013-11 Masatoshi OKITA
Optimal decay rate for strong solutions in critical spaces to the compressible Navier-Stokes equations

MI2013-12 Shuichi KAWANO, Ibuki HOSHINA, Kazuki MATSUDA & Sadanori KONISHI
Predictive model selection criteria for Bayesian lasso

MI2013-13 Hayato CHIBA
The First Painleve Equation on the Weighted Projective Space

MI2013-14 Hidetoshi MATSUI
Variable selection for functional linear models with functional predictors and a functional response

MI2013-15 Naoyuki KAMIYAMA
The Fault-Tolerant Facility Location Problem with Submodular Penalties

MI2013-16 Hidetoshi MATSUI
Selection of classification boundaries using the logistic regression

MI2014-1 Naoyuki KAMIYAMA
Popular Matchings under Matroid Constraints

MI2014-2 Yasuhide FUKUMOTO & Youichi MIE
Lagrangian approach to weakly nonlinear interaction of Kelvin waves and a symmetry-breaking bifurcation of a rotating flow

MI2014-3 Reika AOYAMA
Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Parallel flow in a cylindrical domain