Optimal decay rate for strong solutions in critical spaces to the compressible Navier-Stokes equations

Masatoshi OKITA

MI 2013-11

(Received August 31, 2013)
Optimal decay rate for strong solutions in critical spaces to the compressible Navier-Stokes equations

Masatoshi Okita
Graduate School of Mathematics,
Kyushu University,
Fukuoka 819-0395, Japan
Email: m-okita@math.kyushu-u.ac.jp

Abstract: In this paper we are concerned with the convergence rates of the global strong solution to motionless state with constant density for the compressible Navier-Stokes equations in the whole space \mathbb{R}^n for $n \geq 3$. It is proved that the perturbations decay in critical spaces, if the initial perturbations of density and velocity are small in $B^{\frac{n}{2}}_{2,1}(\mathbb{R}^n) \cap \dot{B}^0_{1,\infty}(\mathbb{R}^n)$ and $B^{\frac{n}{2}-1}_{2,1}(\mathbb{R}^n) \cap \dot{B}^0_{1,\infty}(\mathbb{R}^n)$, respectively.

Key Words: compressible Navier-Stokes equations; convergence rate.

2010 Mathematics Subject Classification Numbers. 35Q30, 76N15.

1 Introduction

This paper studies the initial value problem for the compressible Navier-Stokes equation in \mathbb{R}^n:

$$
\begin{align*}
\partial_t \rho + \nabla \cdot (\rho u) &= 0, \\
\partial_t u + (u \cdot \nabla)u + \nabla P(\rho) &= \frac{\mu}{\rho} \Delta u + \frac{\mu}{\rho} \nabla (\nabla \cdot u), \\
(\rho, u)(0, x) &= (\rho_0, u_0)(x).
\end{align*}
$$

(1)

Here $t > 0$, $x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$; the unknown functions $\rho = \rho(t, x) > 0$ and $u = u(t, x) = (u_1(t, x), u_2(t, x), \ldots, u_n(t, x))$ denote the density and velocity, respectively; $P = P(\rho)$ is the pressure that are assumed to be a function of the density ρ; μ and μ' are the viscosity coefficients satisfying the conditions $\mu > 0$ and $\mu' + \frac{2}{n} \mu \geq 0$; and $\nabla \cdot$, ∇ and Δ denote the usual divergence, gradient and Laplacian with respect to x, respectively.

We assume that $P(\rho)$ is smooth in a neighborhood of $\bar{\rho}$ with $P'(\bar{\rho}) > 0$, where $\bar{\rho}$ is a given positive constant.

In this paper we derive the convergence rate of solution of problem (1) to the constant stationary solution $(\bar{\rho}, 0)$ as $t \to \infty$ when the initial perturbation $(\rho_0 - \bar{\rho}, u_0)$ is sufficiently small in critical spaces and $\dot{B}^0_{1,\infty}$ for $n \geq 3$. 1
Matsumura-Nishida [8] showed the global in time existence of solution of (1) for \(n = 3 \), provided that the initial perturbation \((\rho_0 - \rho, u_0)\) is sufficiently small in \(H^3(\mathbb{R}^3) \cap L^1(\mathbb{R}^3) \). Furthermore, the following decay estimates was obtained in [8]:

\[
\|\nabla^k(\rho - \rho_0, u)(t)\|_{L^2} \leq C(1 + t)^{-\frac{3}{2} - \frac{k}{2}} \quad k = 0, 1.
\]

These results were proved by combining the energy method and the decay estimates of the semigroup \(E(t) \) generated by the linearized operator \(A \) at the constant state \((\tilde{\rho}, 0)\).

On the other hand, Kawashita [6] showed the global existence of solution for initial perturbations sufficiently small in \(H^{s_0}(\mathbb{R}^n) \) with \(s_0 = \left[\frac{3}{2}\right] + 1, n \geq 2 \). (Note that \(s_0 = 2 \) for \(n = 3 \)). Wang-Tan [11] then considered the case \(n = 3 \) when the initial perturbation \((\rho_0 - \rho, u_0)\) is sufficiently small in \(H^2(\mathbb{R}^3) \cap L^1(\mathbb{R}^3) \), and proved the decay estimates (2). Okita [10] showed that if \(n \geq 2 \) then the following estimates hold for the solution \((\rho, u)\) of (1):

\[
\|\nabla^k(\rho - \rho_0, u)(t)\|_{L^2} \leq C(1 + t)^{-\frac{3}{2} - \frac{k}{2}} \quad k = 0, \ldots, s_0,
\]

provided that \((\rho_0 - \rho, u_0)\) is sufficiently small in \(H^{s_0}(\mathbb{R}^n) \cap L^1(\mathbb{R}^n) \) with \(s_0 = \left[\frac{3}{2}\right] + 1 \). This result was shown by decomposition of the perturbation into low and high frequency parts. Moreover Liang Li-Zhang [7] showed the density and momentum converge at the rates \((1 + t)^{-\frac{s}{2}}\) in the \(L^2 \)-norm, when initial perturbation sufficiently small in \(H^l(\mathbb{R}^3) \cap B_{1,\infty}^{-s}(\mathbb{R}^3) \) with \(l \geq 4 \) and \(s \in [0, 1] \). Note that \(L^1 \) is included in \(\dot{B}_{1,\infty}^0 \).

Danchin [2] proved the global existence in critical homogeneous Besov space, which is stated as follows.

Proposition 1.1 (Danchin [2]). Let \(n \geq 2 \). There are two positive constants \(\epsilon_1 \) and \(M \) such that for all \((\rho_0, u_0)\) with \((\rho_0 - \rho, u_0) \in B_{2,1}^{\frac{3}{2}} \cap B_{2,1}^{-1}, u_0 \in B_{2,1}^{-1} \) and

\[
\|\rho_0 - \rho\|_{B_{2,1}^{\frac{3}{2}} \cap B_{2,1}^{-1}} + \|u_0\|_{B_{2,1}^{-1}} \leq \epsilon_1,
\]

then problem (1) has a unique global solution \((\rho, u)\) \(\in C(\mathbb{R}^+; B_{2,1}^{\frac{3}{2}} \cap B_{2,1}^{-1}) \times (L^1(\mathbb{R}^+; B_{2,1}^{\frac{3}{2} + 1}) \cap C(\mathbb{R}^+; B_{2,1}^{\frac{3}{2} - 1})) \) that satisfies the estimate

\[
\|\rho - \rho_0\|_{B_{2,1}^{\frac{3}{2} - 1}} + \|u\|_{B_{2,1}^{\frac{3}{2} - 1}} + \int_0^\infty \|u\|_{B_{2,1}^{\frac{3}{2} + 1}} dt \leq M(\|\rho_0 - \rho\|_{B_{2,1}^{\frac{3}{2}} \cap B_{2,1}^{-1}} + \|u_0\|_{B_{2,1}^{-1}}).
\]

For critical nonhomogeneous Besov space, Haspot [4] proved the local well-posedness.

Proposition 1.2 (Haspot [4]). Let \(n \geq 2 \). Let \(u_0 \in B_{2,1}^{\frac{3}{2} - 1} \) and \((\rho_0 - \rho) \in B_{2,1}^{\frac{3}{2}} \) with \(\rho_0 - \rho > 0 \). Then there exist a constant \(T > 0 \) such that the problem (1) has a unique local solution \((\rho, u)\) on \([0, T]\) with \(\rho - \tilde{\rho} > 0 \) and:

\[
\rho - \tilde{\rho} \in C([0, T]; B_{2,1}^{\frac{3}{2}}), \quad u \in C([0, T]; B_{2,1}^{\frac{3}{2} - 1}) \cap L^1(0, T; B_{2,1}^{\frac{3}{2} + 1})).
\]
We now state our main result of this paper which gives the optimal L^2 decay rate for strong solutions in critical Besov spaces.

Theorem 1.3. Assume that $n \geq 3$. There exists $\epsilon > 0$ such that if $u_0 \in B^{\frac{n}{2} - 1}_{2,1} \cap \dot{B}^0_{1,\infty}$, $(\rho_0 - \bar{\rho}) \in B^{\frac{n}{2}}_{2,1} \cap \dot{B}^0_{1,\infty}$ and

$$\|\rho_0 - \bar{\rho}\|_{B^{\frac{n}{2}}_{2,1} \cap \dot{B}^0_{1,\infty}} + \|u_0\|_{B^{\frac{n}{2} - 1}_{2,1} \cap \dot{B}^0_{1,\infty}} \leq \epsilon,$$

then problem (1) has a unique global solution $(\rho - \bar{\rho}, u) \in C(\mathbb{R}^+; B^{\frac{n}{2}}_{2,1}) \times (C(\mathbb{R}^+; B^{\frac{n}{2} - 1}_{2,1}) \cap L^1(\mathbb{R}^+; B^{\frac{n}{2} + 1}_{2,1})).$ Furthermore, there exists constant $C_0 > 0$, we have

$$\|(\rho - \bar{\rho}, u)\|_{B^{\frac{n}{2} - 1}_{2,1}} \leq C_0 (1 + t)^{-\frac{n}{4}}$$

for $t \geq 0$.

Remark 1.4. If (ρ_0, u_0) satisfies the assumption of Theorem 1.3, then it also satisfies the assumption of Proposition 1.1. Therefore, we have estimate of (3).

Remark 1.5. We will derive the a priori estimate with time weight for $\|(\rho(t) - \bar{\rho}, u(t))\|_{B^{\frac{n}{2}}_{2,1} \times B^{\frac{n}{2} - 1}_{2,1}}$ which, together with Proposition 1.2, proves the global existence in nonhomogeneous critical Besov spaces and $\dot{B}^0_{1,\infty}$.

Remark 1.6. The convergence rates for the problem of (1) given in (2) are optimal. By $B^{\frac{n}{2} - 1}_{2,1} \subset L^2$, the convergence rate of (4) are optimal.

To prove Theorem 1.3, as in [5], we introduce a decomposition of the perturbation $U(t) = (\rho - \bar{\rho}, u)(t)$ associated with the spectral properties of the linearized operator A. In the case of our problem, we simply decompose the perturbation $U(t)$ into low and high frequency parts. As for the low frequency part, we apply the decay estimates for the low frequency part of $E(t)$; while the high frequency part is estimated by using the energy method. One of the points of our approach is that by restricting the use of the decay estimates for $E(t)$ to its low frequency part, one can avoid the derivative loss due to the convective term of the transport equation (1). On the other hand, the convective term of (1) can be controlled by the energy method and commutator estimate which we apply to the high frequency part. Another point is that we have $\int_0^\infty \|u\|^2_{B^{\frac{n}{2} + 1}_{2,1}} dt < C\epsilon$, established in Proposition 1.1. We need this estimate when we estimate the nonlinear terms.

The paper is organized as follows. In Section 2 we introduce the notation and some properties of Besov spaces. In Section 3 we rewrite the system into the one for the perturbation and introduce auxiliary Lemmas used in this paper. In Section 4 we give the proof of Theorem 1.3.

2 Preliminaries

In this section we first introduce the notation which will be used throughout this paper. We then introduce Besov spaces and some properties of Besov spaces.
2.1 Notation

Let $L^p(1 \leq p \leq \infty)$ denote the usual L^p-Lebesgue space on \mathbb{R}^n. For nonnegative integer m, we denote by H^m the usual L^2-Sobolev space of order m. The inner-product of L^2 is denoted by (\cdot, \cdot). If S is any nonempty set, sequence space $l^p(S)$ denote the usual l^p sequence space on S.

For any integer $l \geq 0$, $\nabla^l f$ denotes all of l-th derivatives of f.

For a function f, we denote its Fourier transform by $\mathfrak{F}[f] = \hat{f}$:

$$\mathfrak{F}[f](\xi) = \hat{f}(\xi) = \int_{\mathbb{R}^n} f(x) e^{-ix \cdot \xi} dx.$$

The inverse of \mathfrak{F} is denoted by $\mathfrak{F}^{-1}[f] = \check{f}$,

$$\mathfrak{F}^{-1}[f](x) = \check{f}(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} f(\xi) e^{i\xi \cdot x} d\xi.$$

2.2 Besov spaces

Let us now define the homogeneous and nonhomogeneous Besov spaces. First we introduce the dyadic partition of unity. We can use for instance any $(\phi, \chi) \in C^\infty$, such that ϕ is supported in $\{\xi \in \mathbb{R}^n | \frac{3}{4} \leq |\xi| \leq \frac{3}{2}\}$, χ is supported in $\{\xi \in \mathbb{R}^n ||\xi|| \leq \frac{3}{4}\}$ such that

$$\forall \xi \in \mathbb{R}^n, \chi(\xi) + \sum_{j \geq 0} \phi(2^{-j} \xi) = 1,$$

$$\forall \xi \in \mathbb{R}^n \setminus \{0\}, \sum_{j \in \mathbb{Z}} \phi(2^{-j} \xi) = 1,$$

$$|j - j'| \geq 2 \Rightarrow \text{Supp} \phi(2^{-j} \cdot) \cap \text{Supp} \phi(2^{-j'} \cdot) = \emptyset,$$

$$j \geq 1 \Rightarrow \text{Supp} \chi \cap \text{Supp} \phi(2^{-j} \cdot) = \emptyset.$$

Denoting $h = \mathfrak{F}^{-1}\phi$ and $\tilde{h} = \mathfrak{F}^{-1}\chi$, we then define the dyadic blocks by

$$\triangle_{-1} u = \chi(D) u = \tilde{h} * u,$$

$$\triangle_j u = \phi(2^{-j} D) u = 2^{jn} \int_{\mathbb{R}^n} h(2^j y) u(x - y) dy \text{ if } j \geq 0,$$

$$\dot{\triangle}_j u = \phi(2^{-j} D) u = 2^{jn} \int_{\mathbb{R}^n} h(2^j y) u(x - y) dy \text{ if } j \in \mathbb{Z}.$$

The low-frequency cut-off operator is defined by

$$S_j u = \sum_{-1 \leq k \leq j-1} \triangle_k u, \quad \dot{S}_j u = \sum_{k \leq j-1} \dot{\triangle}_k u.$$
Obviously we can write that: \(Id = \sum_j \Delta_j\). The high-frequency cut-off operator \(\tilde{S}_j\) is defines by
\[
\tilde{S}_j = Id - S_j = \sum_{k \geq j} \Delta_k u,
\]

To begin, we define Besov spaces.

Definition 1. For \(s \in \mathbb{R}\) and \(1 \leq p, r \leq \infty\), and \(u \in S'\) we set
\[
\|u\|_{B^{s}_{p,r}} := \left\|2^{js} \|\Delta_j u\|_{L^p} \right\|_{l^r(k \geq -1)},
\]
\[
\|u\|_{\dot{B}^{s}_{p,r}} := \left\|2^{js} \|\dot{\Delta}_j u\|_{L^p} \right\|_{l^r(Z)}.
\]

The nonhomogeneous Besov space \(B^s_{p,r}\) and the homogeneous Besov space \(\dot{B}^s_{p,r}\) are set of function \(u \in S'\) such that
\[
\|u\|_{B^{s}_{p,r}}, \quad \|u\|_{\dot{B}^{s}_{p,r}} < \infty \text{ respectively.}
\]

Let us state some basic Lemmas for Besov spaces.

Lemma 2.1. The following properties hold:

(i) \(\|\nabla \Delta_{-1} u\|_{L^2} \leq C \|\Delta_{-1} u\|_{L^2}\).

(ii) \(C^{-1} 2^j \|\Delta_j u\|_{L^2} \leq \|\nabla \Delta_j u\|_{L^2} \leq C 2^j \|\Delta_j u\|_{L^2} \quad (j \in \mathbb{Z})\).

(iii) \(\|\nabla S_j u\|_{L^2} \leq C 2^j \|S_j u\|_{L^2} \quad (j \geq 0)\).

(iv) \(\|\dot{S}_j u\|_{L^2} \leq C 2^j \|\nabla \dot{S}_j u\|_{L^2} \quad (j \geq 0)\).

The assertions (i), (ii), (iii) and (iv) easily follow from the Plancherel theorem.

Lemma 2.2. The following properties hold:

(i) \(C^{-1} \|u\|_{\dot{B}^{s}_{p,r}} \leq \|\nabla u\|_{\dot{B}_{p,r}^{-1}} \leq C \|u\|_{\dot{B}^{s}_{p,r}}\).

(ii) \(\|\nabla u\|_{\dot{B}_{p,r}^{-1}} \leq C \|u\|_{\dot{B}^{s}_{p,r}}\).

(iii) If \(s' > s\) or if \(s' = s\) and \(r_1 \leq r\) then \(B^{s'}_{p,r_1} \subset \dot{B}^s_{p,r}\).

(iv) If \(r_1 \leq r\) then \(\dot{B}^s_{p,r_1} \subset \dot{B}^s_{p,r}\).

(v) Let \(\Lambda := \sqrt{-\Delta}\) and \(t \in \mathbb{R}\). Then the operator \(\Lambda^t\) is an isomorphism from \(\dot{B}^s_{2,1}\) to \(\dot{B}^{s-t}_{2,1}\).

Lemma 2.3. The following properties hold:

(i) \(\|u\|_{L^\infty} \leq C \|u\|_{\dot{B}^{s}_{2,1}} \quad (\dot{B}^s_{2,1} \subset L^\infty)\).

(ii) \(\dot{B}^0_{1,1} \subset L^1 \subset \dot{B}^0_{1,\infty}\).

(iii) \(B^s_{2,2} \approx H^s\).

(iv) \(B^s_{p,r} \subset \dot{B}^s_{p,r} \quad (s > 0)\).

3 Reformulation of the problem

In this section we first rewrite system (1) into the one for the perturbation. We then introduce some auxiliary lemmas which will be useful in the proof of the main result.

Let us rewrite the problem (1). We define \(\mu_1, \mu_2 \) and \(\gamma \) by

\[
\mu_1 = \frac{\mu}{\bar{\rho}}, \quad \mu_2 = \frac{\mu + \mu'}{\bar{\rho}}, \quad \gamma = \sqrt{P''(\bar{\rho})}.
\]

By using the new unknown function

\[
\sigma(t,x) = \frac{\rho(t,x) - \bar{\rho}}{\bar{\rho}}, \quad w(t,x) = \frac{1}{\gamma} u(t,x),
\]

the initial value problem (1) is reformulated as

\[
\begin{aligned}
\partial_t \sigma + \gamma \nabla \cdot w &= F_1(U), \\
\partial_t w - \mu_1 \Delta w - \mu_2 \nabla (\nabla \cdot w) + \gamma \nabla \sigma &= F_2(U), \\
(\sigma, w)(0,x) &= (\sigma_0, w_0)(x),
\end{aligned}
\]

(5)

where, \(U = \left(\begin{array}{c} \sigma \\ w \end{array} \right) \),

\[
F_1(U) = -\gamma (w \cdot \nabla \sigma + \sigma \nabla \cdot w),
\]

\[
F_2(U) = -\gamma (w \cdot \nabla w) - \mu_1 \frac{\sigma}{\sigma + 1} \Delta w - \mu_2 \frac{\sigma}{\sigma + 1} \nabla (\nabla \cdot w)
\]

\[
+ \left(\frac{\bar{\rho} \gamma}{\sigma + 1} \right) \gamma \int_0^1 P''(s\bar{\rho} \sigma + \bar{\rho}) ds \sigma \nabla \sigma.
\]

We set

\[
A = \begin{pmatrix} 0 & -\gamma \nabla \\ -\gamma \nabla & \mu_1 \Delta + \mu_2 \nabla \nabla \cdot \end{pmatrix}.
\]

By using operator \(A \), problem (5) is written as

\[
\partial_t U - AU = F(U), \quad U|_{t=0} = U_0,
\]

(6)

where

\[
F(U) = \begin{pmatrix} F_1(U) \\ F_2(U) \end{pmatrix}, \quad U_0 = \begin{pmatrix} \sigma_0 \\ w_0 \end{pmatrix}.
\]

We introduce a semigroup associated with \(A \). We set

\[
E(t) u := \mathfrak{S}^{-1} [e^{\hat{A}(\xi) t} \hat{u}] \quad \text{for} \ u \in L^2,
\]

where

\[
\hat{A}(\xi) = \begin{pmatrix} 0 & -i \gamma \xi^t \\ -i \gamma \xi & -\mu_1 |\xi|^2 I_n - \mu_2 \xi \xi^t \end{pmatrix}.
\]

Here and in what follows the superscript \(^t \) means the transposition.

We next state some basic Lemmas.
Lemma 3.1. Let $s_1, s_2 \leq \frac{n}{2}$ such that $s_1 + s_2 > 0$, $u \in \dot{B}^{s_1}_{2,1}$ and $v \in \dot{B}^{s_2}_{2,1}$. Then $uv \in \dot{B}^{s_1+s_2-\frac{n}{2}}_{2,1}$ and
\[
\|uv\|_{\dot{B}^{s_1+s_2-\frac{n}{2}}_{2,1}} \leq C\|u\|_{\dot{B}^{s_1}_{2,1}}\|v\|_{\dot{B}^{s_2}_{2,1}}.
\]
See, e.g., [1], for the proof.

Lemma 3.2. Let $s > 0$ and $u \in \dot{B}^{s}_{2,1} \cap L^\infty$. Let $F \in W^{[s]+2,\infty}_{loc}(\mathbb{R}^n)$ such that $F(0) = 0$. Then $F(u) \in \dot{B}^{s}_{2,1}$. Moreover, there exists a function C_1 of one variable depending only on s, n and F, and such that
\[
\|F(u)\|_{\dot{B}^{s}_{2,1}} \leq C_1(\|u\|_{L^\infty})\|u\|_{\dot{B}^{s}_{2,1}}.
\]
See, e.g., [2], for the proof.

Lemma 3.3. (i) Let $a, b > 0$ satisfying $\max\{a, b\} > 1$. Then
\[
\int_0^t (1 + s)^{-a}(1 + t - s)^{-b}ds \leq C(1 + t)^{-\min\{a, b\}}, \quad t \geq 0.
\]
(ii) Let $a, b > 0$ and $f \in L^1(0, \infty)$. Then
\[
\int_0^t (1 + t)^{-a}(1 + t - s)^{-b}fds \leq C(1 + t)^{-\min\{a, b\}}\int_0^t |f|ds, \quad t \geq 0.
\]
For the proof of (i), see [9]. Proof of (ii) can be proved using Hölder inequality.

4 Proof of main result

In this section we prove Theorem 1.3. In subsections 4.1 and 4.2 we establish the necessary estimates for $\triangle_{-1} U(t)$ and $\triangle_j U(t)$ for $j \geq 0$, respectively. In subsection 4.3 we derive the a priori estimate to complete the proof of Theorem 1.3.

Proposition 4.1. Let $T > 0$ and let (σ, w) be a solution of problem (6) on $[0, T]$ such that
\[
\sigma \in C([0, T]; B^n_{2,1}), w \in C([0, T]; B^n_{2,1}) \cap L^1(0, T; B^{n+1}_{2,1}),
\]
Then, $\triangle_j U(t) = (\triangle_j \sigma, \triangle_j w)$ for $j \geq -1$ satisfy
\[
\partial_t \triangle_j U - A\triangle_j U = \triangle_j F(U),
\]
\[
\triangle_j U|_{t=0} = \triangle_j U_0.
\]
Moreover, $\triangle_j U(t)$ for $j \geq -1$ satisfy
\[
\triangle_j U(t) = E(t)\triangle_j U_0 + \int_0^t E(t-s)\triangle_j F(U)(s)ds.
\]
Proof. Let \(U(t) = (\sigma, w)^t \) be a solution of (6) satisfying (7). Since \(\Delta_j AU = A \Delta_j U \), applying \(\Delta_j \) to (6), we obtain
\[
\begin{cases}
\partial_t \Delta_j U - A \Delta_j U = \Delta_j F(U), \\
\Delta_j U|_{t=0} = \Delta_j U_0.
\end{cases}
\]
(11)

It then follows that
\[
\Delta_j U(t) = E(t) \Delta_j U_0 + \int_0^t E(t-s) \Delta_j F(U)(s) ds.
\]
This completes the proof.
\[
\square
\]

Set
\[
M_1(t) := \sup_{0 \leq \tau \leq t} (1 + \tau)^{\frac{n}{2}} \| \Delta_{-1} U(\tau) \|_{L^2},
\]
\[
M_\infty(t) := \sup_{0 \leq \tau \leq t} (1 + \tau)^{\frac{n}{2}} \sum_{j=0}^\infty 2^{(\frac{n}{2} - 1)j} \left\{ \| \Delta_j U(\tau) \|_{L^2} + 2^j \| \Delta_j \sigma \|_{L^2} \right\},
\]
\[
M(t) := M_1(t) + M_\infty(t).
\]

4.1 Estimate of low frequency parts

In this subsection we derive the estimate of \(\Delta_{-1} U(t) \), in other words, we estimate \(M_1(t) \).

Lemma 4.2 (Matsumura-Nishida [9]). (i) The set of all eigenvalues of \(\hat{A}(\xi) \) consists of \(\lambda_i(\xi) \) (\(i = 1, 2, 3 \)), where
\[
\begin{align*}
\lambda_1(\xi) &= \frac{-\mu_1 |\xi| + \mu_2 |\xi| \sqrt{4 |\xi|^2 - (\mu_1 + \mu_2) |\xi|^2}}{2}, \\
\lambda_2(\xi) &= \lambda_1(\xi), \\
\lambda_3(\xi) &= -\mu_1 |\xi|^2,
\end{align*}
\]
for all \(\xi \in \mathbb{R}^n \). Here \(\lambda_1(\xi) \) denotes the complex conjugate of \(\lambda_1(\xi) \).

(ii) \(e^{t \hat{A}(\xi)} \) has the spectral resolution
\[
e^{t \hat{A}(\xi)} = \sum_{j=1}^3 e^{t \lambda_j(\xi)} P_j(\xi),
\]
for all \(|\xi| \) except at most points of \(|\xi| > 0 \), where \(P_j(\xi) \) is the eigenprojection for \(\lambda_j(\xi) \) and \(P_j(\xi) \) satisfies
\[
\| P_j(\xi) \| \leq C \quad (|\xi| \leq r).
\]
where \(r = \frac{\gamma}{\sqrt{\mu_1 + \mu_2}} \).
Moreover it has the estimate
\[
\| e^{t \hat{A}(\xi)} \| \leq C e^{-\beta t},
\]
for all \(|\xi| \geq r \) and a positive constant \(\beta \).
Remark 4.3. For each $M > 0$ there exist $C_2 = C_2(M) > 0$ and $\beta_2 = \beta_2(M) > 0$ such that the estimate

$$\|e^{tA(\xi)}\| \leq C_2 e^{-\beta_2|\xi|^2 t}$$

holds for $|\xi| \leq M$ and $t > 0$.

Lemma 4.4. $E(t)$ satisfies the estimate,

$$\|E(t)\triangle_{-1} U_0\|_{L^2} \leq C(1 + t)^{-\frac{n}{2}} \|U_0\|_{\dot{B}_{1,\infty}^0}$$

for $t \geq 0$.

Proof. By Plancherel’s theorem and Lemma 4.2 (ii), we have

$$\|E(t)\triangle_{-1} U_0(t)\|_{L^2} \leq C\left(\int_{|\xi| \leq 2} |e^{A(\xi) t} \hat{U}_0|^2 d\xi \right)^{\frac{1}{2}}$$

$$\leq C\left(\int_{0 < |\xi| \leq 2} e^{-|\xi|^2 t} |\hat{U}_0(\xi)|^2 d\xi \right)^{\frac{1}{2}}$$

$$\leq C \sum_{j \leq 2} (\|\Delta_j U_0\|_{L^1} \|\tilde{\Delta}_j U_0\|_{L^1} \int_{2^j-1 < |\xi| < 2^{j+1}} e^{-|\xi|^2 t} d\xi)^{\frac{1}{2}}$$

$$\leq C t^{-\frac{n}{2}} \|U_0\|_{\dot{B}_{1,\infty}^0}, \quad (12)$$

where $\tilde{\Delta}_j := \Delta_{j-1} + \Delta_j + \Delta_{j+1}$.

We also find that

$$\|E(t)\triangle_{-1} U_0\|_{L^2} \leq C \sum_{j \leq 2} (\|\Delta_j U_0\|_{L^1} \|\tilde{\Delta}_j U_0\|_{L^1} \int_{2^j-1 < |\xi| < 2^{j+1}} e^{-|\xi|^2 t} d\xi)^{\frac{1}{2}}$$

$$\leq C \|U_0\|_{\dot{B}_{1,\infty}^0}. \quad (13)$$

The estimate of Lemma 4.4 follows from (12) and (13).

As for $M_1(t)$, we show the following estimate.

Proposition 4.5. Let $n \geq 3$. There exists a $\epsilon > 0$ such that if

$$\|w_0\|_{\dot{B}_{2,1}^{\frac{n}{2} - 1}} + \|\sigma_0\|_{\dot{B}_{2,1}^{\frac{n}{2}}} \leq \epsilon,$$

then there exists a constant $C > 0$ independent of T such that

$$M_1(t) \leq C \|U_0\|_{\dot{B}_{1,\infty}^0} + C \epsilon M_t(t) + CM^2(t)$$

for $t \in [0, T]$.

9
To prove Proposition 4.5, we will use the following estimates on \(F(U) \).

Lemma 4.6. There exists a \(\epsilon > 0 \) such that if
\[
\|w_0\|_{B^{2n-1}_{2,1}} + \|\sigma_0\|_{B^{2n}_{2,1}} \leq \epsilon,
\]
then there exists a constant \(C > 0 \) independent of \(T \) such that
\[
\|F(U)\|_{B^0_{1,\infty}} \leq C(1 + t)^{-\frac{n}{4}} M(t) f(t) + C(1 + t)^{-\frac{n}{2}} M^2(t)
\]
for \(t \in [0, T] \), where \(0 \leq f \leq \|w\|_{B^2_{2,1}} + 1 \in L^1(0, \infty) \).

We will prove Lemma 4.6 later. Now we prove Proposition 4.5.

Proof of Proposition 4.5. By Lemma 4.4 and (10), we see that
\[
\|\Delta_{-1} U(\tau)\|_{L^2} \leq \|E(\tau)\Delta_{-1} U_0\|_{L^2} + \int_0^\tau \|E(\tau - s)\Delta_{-1} F(U(s))\|_{L^2} ds
\]
\[
\leq C(1 + \tau)^{-\frac{n}{4}} \|U_0\|_{B^0_{1,\infty}} + \int_0^\tau (1 + \tau - s)^{-\frac{n}{4}} \|F(U(s))\|_{B^0_{1,\infty}} ds.
\]
(14)
Using Lemma 4.6, we have
\[
\int_0^\tau (1 + \tau - s)^{-\frac{n}{4}} \|F(U(s))\|_{B^0_{1,\infty}} ds
\]
\[
\leq C \int_0^\tau (1 + \tau - s)^{-\frac{n}{4}} \{(1 + s)^{-\frac{n}{4}} f(s) M(t) + (1 + s)^{-\frac{n}{2}} M^2(t)\} ds
\]
\[
\leq CM(t) \int_0^\tau (1 + \tau - s)^{-\frac{n}{4}} (1 + s)^{-\frac{n}{4}} f(s) ds
\]
\[
+ CM^2(t) \int_0^\tau (1 + \tau - s)^{-\frac{n}{4}} (1 + s)^{-\frac{n}{2}} ds
\]
\[
\leq C(1 + \tau)^{-\frac{n}{4}} \epsilon M(t) + C(1 + \tau)^{-\frac{n}{4}} M^2(t).
\]
(15)
Here we used Lemma 3.3, in other words, we used \(\frac{n}{2} > 1 \) for \(n \geq 3 \) and \(\int_0^\tau f(s) ds \leq M \epsilon \). By (14) and (15), we obtain
\[
\|\Delta_{-1} U(\tau)\|_{L^2} \leq C(1 + \tau)^{-\frac{n}{4}} \|U_0\|_{B^0_{1,\infty}} + C\epsilon(1 + \tau)^{-\frac{n}{4}} M(t) + C(1 + \tau)^{-\frac{n}{4}} M^2(t),
\]
and hence,
\[
(1 + \tau)^{\frac{3}{4}} \|\Delta_{-1} U(\tau)\|_2 \leq C \|U_0\|_{B^0_{1,\infty}} + C\epsilon M(t) + CM^2(t).
\]
Taking the supremum in \(\tau \in [0, t] \), we obtain the desired estimate. \(\square \)
It remains to prove Lemma 4.6.

Proof of Lemma 4.6. Since $L^1 \subset \dot{B}^0_{1,\infty}$, it suffices to estimate $\|F(U)\|_{L^1}$. By the Hölder inequality, we have

$$\|F(U)\|_{L^1} \leq C \left\{ \|w\|_{L^2} \|\nabla \sigma\|_{L^2} + \|\sigma\|_{L^2} \|\nabla w\|_{L^2} + \|w\|_{L^2} \|\nabla w\|_{L^2} + \|\sigma\|_{L^2} \|\nabla w\|_{L^2} \right\},$$

We see from $B_{s}^{s} \subset L^2$ ($s \geq 0$) that

$$\|w\|_{L^2} \|\nabla \sigma\|_{L^2} \leq C \|w\|_{B_{s}^{s-1}} \|\nabla \sigma\|_{B_{s}^{s-1}} \leq C (1 + s)^{-\frac{n}{2}} M^2(t),$$

$$\|\sigma\|_{L^2} \|\nabla w\|_{L^2} \leq C \|\sigma\|_{B_{s}^{s-1}} \left\{ \|\Delta^{-1} w\|_{L^2} + \|S_0 w\|_{B_{s}^{s}} \right\} \leq C \|\sigma\|_{B_{s}^{s-1}} \left\{ \|w\|_{B_{s}^{s-1}} + \|w\|_{B_{s}^{s+1}} \right\} \leq C (1 + s)^{-\frac{n}{2}} M^2(t) + C (1 + s)^{-\frac{n}{2}} M(t) f(t),$$

where $0 \leq f(t) \leq \|w\|_{B_{s}^{s+1}}$. As for $\|\nabla^2 w\|_{L^2}$, we get

$$\|\nabla^2 w\|_{L^2} \leq C \left\{ \|\Delta^{-1} w\|_{L^2} + \|S_0 w\|_{B_{s}^{s+1}} \right\} \leq C \left\{ \|w\|_{B_{s}^{s-1}} + \|w\|_{B_{s}^{s+1}} \right\}.$$

The other terms are estimated similarly. Hence we have

$$\|F(U)\|_{\dot{B}_{1,\infty}^0} \leq C (1 + s)^{-\frac{n}{2}} M^2(t) + C (1 + s)^{-\frac{n}{2}} M(t) f(t).$$

This completes the proof.

4.2 Estimate of high frequency parts

We next derive estimates for M_∞. The system (8) is written as

$$\begin{aligned}
\partial_t \Delta_j \sigma + \gamma \nabla \cdot \Delta_j w &= \Delta_j F_1(U), \\
\partial_t \Delta_j w - \mu_1 \Delta \Delta_j w - \mu_2 \nabla \cdot (\nabla \Delta_j w) + \gamma \nabla \Delta_j \sigma &= \Delta_j F_2(U).
\end{aligned} \tag{16}$$

Proposition 4.7. Let $j \geq 0$. There holds

$$\begin{aligned}
\frac{1}{2} \frac{d}{dt} \|\Delta_j U(t)\|_{L^2}^2 + \mu_1 \|\nabla \Delta_j w(t)\|_{L^2}^2 + \mu_2 \|\nabla \cdot \Delta_j w(t)\|_{L^2}^2 = (\Delta_j F_1(U), \Delta_j \sigma) + (\Delta_j F_2(U), \Delta_j w)
\end{aligned} \tag{17}$$

for a.e. $t \in [0, T]$.

11
Proof. We take the inner product of (16)₁ and (16)₂ with $\Delta_j \sigma$ and $\Delta_j w$ respectively, integrating by parts and then adding them together, we obtain our proposition. □

For $s \in \mathbb{R}$, we denote $\Lambda^s z := \tilde{\mathbf{3}}^{-1}[|\xi|^s \tilde{z}]$. Let $d = \Lambda^{-1}\nabla \cdot w$ be the “compressible part” of the velocity. Applying $\Lambda^{-1}\nabla \cdot$ to (16)₂, system (16) writes

\[
\begin{aligned}
\begin{cases}
\partial_t \Delta_j \sigma + \gamma \Lambda \Delta_j d = \Delta_j F_1(U), \\
\partial_t \Delta_j d - \nu \Delta \Delta_j d - \gamma \Lambda \Delta_j \sigma = \Lambda^{-1}\nabla \cdot \Delta_j F_2(U),
\end{cases}
\end{aligned}
\]

(18)

where we denote $\nu = \mu_1 + \mu_2$.

Proposition 4.8. Let $j \geq 0$. There holds

\[
\begin{aligned}
&\frac{1}{2} \frac{\nu}{\gamma} \frac{d}{dt} \|\Lambda \Delta_j \sigma\|^2_{L^2} - \frac{d}{dt} (\Lambda \Delta_j \sigma, \Delta_j d) + \|\Lambda \Delta_j \sigma\|^2_{L^2} = \gamma \|\Lambda \Delta_j d\|^2_{L^2} \\
&- (\Lambda \Delta_j F_1(U), \Delta_j d) - (\Lambda^{-1}\nabla \cdot \Delta_j F_2(U), \Lambda \Delta_j \sigma) + \frac{\nu}{\gamma} (\Lambda \Delta_j F_1(U), \Lambda \Delta_j \sigma)
\end{aligned}
\]

(19)

for a.e. $t \in [0, T]$.

Proof. We apply Λ to the equation (18)₁ and then take L^2 inner product with $\Delta_j d$. We take L^2 inner product of (18)₂ with $\Lambda \Delta_j \sigma$. We also apply Λ to the equation (18)₁ and take L^2 inner product with $\frac{\nu}{\gamma} \Delta_j \sigma$. By a suitable linear combination of them, we obtain the desired identity of the proposition. □

We introduce a lemma for estimates of the right hand side.

Lemma 4.9. The following inequalities hold

\[
\begin{aligned}
&\| (\Lambda \Delta_j (w \cdot \nabla \sigma), \Lambda \Delta_j \sigma) \| \leq C \alpha_j 2^{-(\frac{q}{2}-1)j} \|w\|_{B^{\frac{q}{2}-1}_{2,1}} \|\sigma\|_{B^{\frac{q}{2}}_{2,1}} \|\Lambda \Delta_j \sigma\|_{L^2}, \\
&\| (\Lambda \Delta_j (w \cdot \nabla \sigma), \Lambda \Delta_j d) \| \leq C \alpha_j 2^{-(\frac{q}{2}-1)j} \|w\|_{B^{\frac{q}{2}-1}_{2,1}} \|\Lambda \Delta_j \sigma\|_{L^2} \|\Lambda \Delta_j d\|_{L^2},
\end{aligned}
\]

where C depends on j and $\|\{\alpha_j\}\|_\nu \leq 1$.

See, e.g., [2], for the proof.

Proposition 4.10. There exists a $\epsilon > 0$ such that if

\[
\|w_0\|_{B^{\frac{q}{2}-1}_{2,1}} + \|\sigma_0\|_{B^{\frac{q}{2}}_{2,1}} \leq \epsilon
\]

12
then there holds
\[
\frac{d}{dt} E_j(t) + c_0 E_j(t) \leq C\{\alpha_j (1 + t)^{-\frac{\nu}{2}} M(t) f(t) \\
+ 2(\frac{\nu}{2} - 1)j ||\Lambda \Delta_j (\sigma \nabla \cdot w)||_{L^2} + 2(\frac{\nu}{2} - 1)j ||\Delta_j (w \cdot \nabla d)||_{L^2} \\
+ 2(\frac{\nu}{2} - 1)j ||\Delta_j F_1(U)||_{L^2} + 2(\frac{\nu}{2} - 1)j ||\Delta_j F_2(U)||_{L^2}\},
\]
(20)
for \(t \in [0, T] \) and \(j \geq 1 \), where \(\sum_{j=0}^\infty \alpha_j \leq 1 \), \(\int_0^\infty \|w\|_{B^{2,1}_{\infty}} \leq C \epsilon \) and \(c_0 \) is not depend on \(j \). Here, \(E_j(t) \) is equivalent to \(2(\frac{\nu}{2} - 1)j ||\Delta_j U(t)||_{L^2} + 2(\frac{\nu}{2} - 1)j ||\Delta_j \sigma||_{L^2} \).

That is, there exists a \(D_1 \) such that
\[
\frac{1}{D_1} (2(\frac{\nu}{2} - 1)j ||\Delta_j U(t)||_{L^2} + 2(\frac{\nu}{2} - 1)j ||\Delta_j \sigma||_{L^2}) \leq E_j \leq D_1 (2(\frac{\nu}{2} - 1)j ||\Delta_j U(t)||_{L^2} + 2(\frac{\nu}{2} - 1)j ||\Delta_j \sigma||_{L^2}).
\]

Proof. We add (17) to \(\kappa \times (19) \) with a constant \(\kappa > 0 \) to be determined later. Then, we obtain
\[
\frac{d}{dt} \left\{ \frac{1}{2} ||\Delta_j U||_{L^2}^2 + \frac{\kappa}{2} \gamma \|\Lambda \Delta_j \sigma\|_{L^2}^2 - \kappa (\Lambda \Delta_j \sigma, \Delta_j d) \right\} \\
+ \mu_1 \|\nabla \Delta_j \omega\|_{L^2}^2 + \mu_2 \|\nabla \cdot \Delta_j \omega\|_{L^2}^2 + \kappa ||\Delta \Delta_j \sigma||_{L^2}^2 \\
= \gamma \kappa (\Lambda \Delta_j \omega, \Delta_j \sigma) + (\Delta_j F_1(U), \Delta_j \sigma) + (\Delta_j F_1(U), \Delta_j \omega) + \kappa \gamma (\Lambda \Delta_j F_1(U), \Lambda \Delta_j \sigma) \\
- \kappa (\Lambda \Delta_j F_1(U), \Delta_j d) - \kappa (\Lambda^{-1} \nabla \cdot \Delta_j F_2(U), \Lambda \Delta_j \sigma).
\]
(21)
We set
\[
E_j^2(t) = 2(\frac{\nu}{2} - 1)j \left\{ \frac{1}{2} ||\Delta_j U||_{L^2}^2 + \frac{\kappa}{2} \gamma \|\Lambda \Delta_j \sigma\|_{L^2}^2 - \kappa (\Lambda \Delta_j \sigma, \Delta_j d) \right\}.
\]
For each \(\kappa \leq 1 \), there exists a \(D_1 > 3 \) such that
\[
E_j^2 \leq D_1^2 (2(\frac{\nu}{2} - 1)j ||\Delta_j U(t)||_{L^2} + 2(\frac{\nu}{2} - 1)j ||\Delta_j \sigma||_{L^2})^2.
\]
By Cauchy’s inequality with \(\delta \), we have
\[
(2(\frac{\nu}{2} - 1)j ||\Delta_j U(t)||_{L^2} + 2(\frac{\nu}{2} - 1)j ||\Delta_j \sigma||_{L^2})^2 \leq \frac{1}{4 \delta^2} (2(\frac{\nu}{2} - 1)j ||\Delta_j U(t)||_{L^2})^2 + \frac{1}{4 \delta^2} (2(\frac{\nu}{2} - 1)j ||\Delta_j \sigma||_{L^2})^2
\]
\[
+ D_1^2 \kappa \delta (2(\frac{\nu}{2} - 1)j ||\Lambda \Delta_j \sigma||_{L^2})^2 + D_1^2 \kappa \delta (2(\frac{\nu}{2} - 1)j ||\Delta_j w||_{L^2})^2.
\]
We select \(\delta = \frac{\nu}{4 \kappa D_1} \) and \(\kappa \) is fixed in such a way that \(\kappa \leq \min\{\delta, \frac{\nu}{4 \gamma}, 1\} \). We then obtain
\[
\frac{1}{D_1^2} (2(\frac{\nu}{2} - 1)j ||\Delta_j U(t)||_{L^2} + 2(\frac{\nu}{2} - 1)j ||\Delta_j \sigma||_{L^2})^2 \leq 2(\frac{\nu}{2} - 1)j \left\{ \frac{1}{2} ||\Delta_j U||_{L^2}^2 + \frac{\kappa}{2} \gamma \|\Lambda \Delta_j \sigma\|_{L^2}^2 - \kappa (\Lambda \Delta_j \sigma, \Delta_j d) \right\} = E_j^2.
\]
13
For \(j \geq 0 \), by Lemma 2.1, there exists a \(c_0 > 0 \) such that

\[2c_0 E_j^2 \leq 2^{2\left(\frac{\alpha}{2} - 1\right)} \left\{ \mu_1 \| \nabla \Delta_j w \|^2_{L^2} + \mu_1 \| \nabla \cdot \Delta_j w \|^2_{L^2} + \kappa \| \Lambda \Delta_j \sigma \|^2_{L^2} - \gamma \kappa \| \Lambda \Delta_j w \|^2_{L^2} \right\}. \]

Let us next estimate the right hand side of \(2^{\left(\frac{\alpha}{2} - 1\right)} \times (21) \). By Hölder’s inequality, we obtain

\[2^{\left(\frac{\alpha}{2} - 1\right)} \left(\Delta_j F_1(U), \Delta_j \sigma \right) \leq 2^{\left(\frac{\alpha}{2} - 1\right)} \| \Delta_j F_1(U) \|_{L^2} 2^{\left(\frac{\alpha}{2} - 1\right)} \| \Delta_j \sigma \|_{L^2}, \]

\[2^{\left(\frac{\alpha}{2} - 1\right)} \left(\Delta_j F_2(U), \Delta_j \sigma \right) \leq 2^{\left(\frac{\alpha}{2} - 1\right)} \| \Delta_j F_2(U) \|_{L^2} 2^{\left(\frac{\alpha}{2} - 1\right)} \| \Delta_j w \|_{L^2}, \]

\[2^{\left(\frac{\alpha}{2} - 1\right)} \left(\Lambda^{-1} \nabla \cdot \Delta_j F_2(U), \Delta_j \sigma \right) \leq 2^{\left(\frac{\alpha}{2} - 1\right)} \| \Delta_j F_2(U) \|_{L^2} 2^{\left(\frac{\alpha}{2} - 1\right)} \| \Delta_j \sigma \|_{L^2}. \]

By Lemma 4.9 we have

\[2^{\left(\frac{\alpha}{2} - 1\right)} \left(\Lambda \Delta_j F_1(U), \Lambda \Delta_j \sigma \right) \]

\[= 2^{\left(\frac{\alpha}{2} - 1\right)} \left(\Lambda \Delta_j (w \cdot \nabla \sigma), \Lambda \Delta_j \sigma \right) + 2^{\left(\frac{\alpha}{2} - 1\right)} \left(\Lambda \Delta_j (\sigma \nabla \cdot w), \Lambda \Delta_j \sigma \right) \]

\[\leq C \alpha_j \| w \|_{B^{\frac{\alpha}{2}+1}_{2,1}} \| \sigma \|_{B^{\frac{\alpha}{2}+1}_{2,1}} 2^{\left(\frac{\alpha}{2} - 1\right)} \| \Lambda \Delta_j \sigma \|_{L^2} + 2^{\left(\frac{\alpha}{2} - 1\right)} \| \Lambda \Delta_j (\sigma \nabla \cdot w) \|_{L^2} \| \Lambda \Delta_j \sigma \|_{L^2}, \]

and

\[2^{\left(\frac{\alpha}{2} - 1\right)} \left(\Delta_j F_1(U), \Delta_j d \right) \]

\[= 2^{\left(\frac{\alpha}{2} - 1\right)} \left(\Delta_j (w \cdot \nabla \sigma), \Delta_j d \right) + 2^{\left(\frac{\alpha}{2} - 1\right)} \left(\Lambda \Delta_j (\sigma \nabla \cdot w), \Delta_j d \right) \]

\[+ 2^{\left(\frac{\alpha}{2} - 1\right)} \left(\Delta_j (w \cdot \nabla d), \Lambda \Delta_j \sigma \right) + 2^{\left(\frac{\alpha}{2} - 1\right)} \left(\Delta_j (w \cdot \nabla \sigma), \Lambda \Delta_j \sigma \right) \]

\[\leq C \alpha_j \| w \|_{B^{\frac{\alpha}{2}+1}_{2,1}} \left(\| d \|_{B^{\frac{\alpha}{2}+1}_{2,1}} + 2^{\left(\frac{\alpha}{2} - 1\right)} \right) \| \Lambda \Delta_j \sigma \|_{L^2} + \| \sigma \|_{B^{\frac{\alpha}{2}+1}_{2,1}} 2^{\left(\frac{\alpha}{2} - 1\right)} \| \Delta_j d \|_{L^2} \]

\[+ 2^{\left(\frac{\alpha}{2} - 1\right)} \| \Delta_j (w \cdot \nabla \cdot d) \|_{L^2} \| \Lambda \Delta_j \sigma \|_{L^2} + 2^{\left(\frac{\alpha}{2} - 1\right)} \| \Lambda \Delta_j (\sigma \nabla \cdot w) \|_{L^2} \| \Lambda \Delta_j \sigma \|_{L^2}, \]

where \(\sum_{j \in \mathbb{Z}} \alpha_j \leq 1 \). Hence we obtain

\[\frac{d}{dt} E_j^2 + 2c_0 E_j^2 \leq C E_j \left\{ \alpha_j (1 + t)^{-\frac{\alpha}{2}} M(t) f(t) \right\} \]

\[+ 2^{\left(\frac{\alpha}{2} - 1\right)} \| \Lambda \Delta_j (\sigma \nabla \cdot w) \|_{L^2} + 2^{\left(\frac{\alpha}{2} - 1\right)} \| \Delta_j (w \cdot \nabla d) \|_{L^2} \]

\[+ 2^{\left(\frac{\alpha}{2} - 1\right)} \| \Delta_j F_1(U) \|_{L^2} + 2^{\left(\frac{\alpha}{2} - 1\right)} \| \Delta_j F_2(U) \|_{L^2} \}. \quad (22) \]

Let \(\delta_1 > 0 \) be a small parameter (which will tend to 0) and denote \(H_j^2 = E_j^2 + \delta_1^2 \). From (22) and dividing by \(H_j \), we gather

\[\frac{d}{dt} H_j + c_0 H_j \leq C \left\{ \alpha_j (1 + t)^{-\frac{\alpha}{2}} M(t) f(t) \right\} \]

\[+ 2^{\left(\frac{\alpha}{2} - 1\right)} \| \Lambda \Delta_j (\sigma \nabla \cdot w) \|_{L^2} + 2^{\left(\frac{\alpha}{2} - 1\right)} \| \Delta_j (w \cdot \nabla d) \|_{L^2} \]

\[+ 2^{\left(\frac{\alpha}{2} - 1\right)} \| \Delta_j F_1(U) \|_{L^2} + 2^{\left(\frac{\alpha}{2} - 1\right)} \| \Delta_j F_2(U) \|_{L^2} \} + c_0 \delta_1^2. \]

Having \(\delta_1 \) tend to 0, we get the desired result. \(\square \)
4.3 Proof of Theorem 1.3.

Proposition 4.11. There exists a constant $\epsilon_2 > 0$ such that if

$$\|U_0\|_{B_{2,1}^{\frac{3}{2}-1} \cap B_{1,\infty}^{0}} + \|\sigma_0\|_{B_{2,1}^{\frac{3}{2}}} \leq \epsilon_2,$$

then there holds

$$M(t) \leq C\{\|U_0\|_{B_{2,1}^{\frac{3}{2}-1} \cap B_{1,\infty}^{0}} + \|\sigma_0\|_{B_{2,1}^{\frac{3}{2}}}\}$$

for $0 \leq t \leq T$, where the constant C does not depend on T.

Proof. By (20) we have

$$E_j(t) \leq e^{-\alpha t} E_j(0) + C \int_0^t e^{-\alpha (t-\tau)} \{\alpha_j (1 + t)^{-\frac{3}{2}} M(t) f(t) + \alpha_j (1 + t)^{-\frac{3}{2}} M^2(t)$$

$$+ 2 (\frac{3}{2}-1) j \|\Delta_j (\sigma \nabla \cdot w)\|_{L^2} + 2 (\frac{3}{2}-1) j \|\nabla_j (w \cdot \nabla d)\|_{L^2}$$

$$+ 2 (\frac{3}{2}-1) j \|\nabla_j F_1(U)\|_{L^2} + 2 (\frac{3}{2}-1) j \|\nabla_j F_2(U)\|_{L^2}\} d\tau,$$

(23)

where $\sum_{j=0}^{\infty} \alpha_j \leq 1$ and $\int_0^t f(t) dt \leq \int_0^\infty \|w\|_{B_{2,1}^{\frac{3}{2}+1}} dt < C\epsilon_2$. Hence summing up on $j \geq 0$, by the monotone convergence theorem, we obtain

$$\sum_{j=0}^{\infty} E_j(t) \leq e^{-\alpha t} \sum_{j=0}^{\infty} E_j(0) + C \int_0^t e^{-\alpha (t-\tau)} \{\alpha_j (1 + t)^{-\frac{3}{2}} M(t) f(t) + (1 + t)^{-\frac{3}{2}} M^2(t)$$

$$+ \|\sigma \nabla \cdot w\|_{B_{2,1}^{\frac{3}{2}}} + \|w \cdot \nabla d\|_{B_{2,1}^{\frac{3}{2}-1}} + \|F_1(U)\|_{B_{2,1}^{\frac{3}{2}-1}} + \|F_2(U)\|_{B_{2,1}^{\frac{3}{2}-1}}\} d\tau.$$

We next estimate the right hand side. From Lemma 3.1 and Lemma 3.2, we have

$$\|\sigma \nabla \cdot w\|_{B_{2,1}^{\frac{3}{2}}} \leq C \|\sigma\|_{B_{2,1}^{\frac{3}{2}}} \|\nabla \cdot w\|_{B_{2,1}^{\frac{3}{2}}} \leq C (1 + \tau)^{-\frac{3}{2}} M(\tau) f(\tau),$$

$$\|w \cdot \nabla d\|_{B_{2,1}^{\frac{3}{2}-1}} \leq C \|w\|_{B_{2,1}^{\frac{3}{2}-1}} \|\nabla d\|_{B_{2,1}^{\frac{3}{2}}} \leq C (1 + \tau)^{-\frac{3}{2}} M(\tau) f(\tau).$$

Let us next consider $\|F_1(U)\|_{B_{2,1}^{\frac{3}{2}-1}}, \|F_2(U)\|_{B_{2,1}^{\frac{3}{2}-1}}$:

$$\|w \cdot \nabla \sigma\|_{B_{2,1}^{\frac{3}{2}-1}} \leq C \|w\|_{B_{2,1}^{\frac{3}{2}}} \|\nabla \sigma\|_{B_{2,1}^{\frac{3}{2}-1}} \leq C \left(\|\Delta_1 w\|_{B_{2,1}^{\frac{3}{2}}} + \|\tilde{S}_0 w\|_{B_{2,1}^{\frac{3}{2}}}\right) \|\sigma\|_{B_{2,1}^{\frac{3}{2}}} \leq C (1 + \tau)^{-\frac{3}{2}} M^2(\tau) + C (1 + \tau)^{-\frac{3}{2}} M(\tau) f(\tau),$$

$$\|\sigma \nabla \cdot w\|_{B_{2,1}^{\frac{3}{2}-1}} \leq C \|\sigma\|_{B_{2,1}^{\frac{3}{2}-1}} \|\nabla w\|_{B_{2,1}^{\frac{3}{2}}} \leq C (1 + \tau)^{-\frac{3}{2}} M(\tau) f(\tau).$$
Hence, we obtain the estimate of $\|F_1(U)\|_{B^{\frac{n}{2}-1}}$. By using Lemma 3.1 and Lemma 3.2, $\|F_2(U)\|_{B^{\frac{n}{2}-1}}$ is estimated as

$$\|\frac{\sigma}{\sigma+1} \Delta w\|_{B^{\frac{n}{2}-1}} \leq C\|\frac{\sigma}{\sigma+1} \|\Delta w\|_{B^{\frac{n}{2}}_{2,1}} \leq C\|\sigma\|_{B^{\frac{n}{2}}_{2,1}} \|w\|_{B^{\frac{n}{2}+1}_{2,1}} \leq C(1+\tau)^{-\frac{n}{4}} M(\tau)f(\tau),$$

$$\|\tilde{\psi}\|_{B^{\frac{n}{2}-1}} \leq C\|\tilde{\psi}\|_{B^{\frac{n}{2}}_{2,1}} \|\nabla \psi\|_{B^{\frac{n}{2}-1}} \leq C(1+\tau)^{-\frac{n}{4}} M^2(\tau),$$

$$\|w \cdot \nabla w\|_{B^{\frac{n}{2}-1}} \leq C\|w\|_{B^{\frac{n}{2}}_{2,1}} \|\nabla w\|_{B^{\frac{n}{2}-1}} \leq C(1+\tau)^{-\frac{n}{4}} M(\tau)f(\tau).$$

In the same way as we can obtain estimates of other terms on $\|F_2(U)\|_{B^{\frac{n}{2}-1}}$. Hence, by using Lemma 3.3, the integral of the right hand side of (23) is estimated as

$$\int_0^t e^{-\lambda(t-\tau)} \left\{ (1+\tau)^{-\frac{n}{4}} M^2(\tau) + (1+\tau)^{-\frac{n}{4}} M(\tau)f(\tau) \right\} d\tau \leq M(t) \int_0^t e^{-\lambda(t-\tau)} (1+\tau)^{-\frac{n}{4}} f(\tau) d\tau + M^2(t) \int_0^t e^{-\lambda(t-\tau)} (1+\tau)^{-\frac{n}{4}} d\tau \leq C(1+t)^{-\frac{n}{4}} \epsilon_2 M(t) + C(1+t)^{-\frac{n}{4}} M^2(t).$$

Hence, we obtain

$$M_\infty(t) \leq C\left(\|U_0\|_{B^{\frac{n}{2}}_{2,1}} + \|\sigma_0\|_{B^{\frac{n}{2}}_{2,1}}\right) + C\epsilon_2 M(t) + CM^2(t). \quad (24)$$

By Proposition 4.5 and (24), we have

$$M(t) \leq C\left(\|U_0\|_{B^{\frac{n}{2}-1}_{2,1} \cap B^{\frac{n}{2}}_{1,\infty}} + \|\sigma_0\|_{B^{\frac{n}{2}}_{2,1}}\right) + C\epsilon_2 M(t) + CM^2(t).$$

By taking $\epsilon_2 > 0$ suitable small, we obtain

$$M(t) \leq C\left(\|U_0\|_{B^{\frac{n}{2}-1}_{2,1} \cap B^{\frac{n}{2}}_{1,\infty}} + \|\sigma_0\|_{B^{\frac{n}{2}}_{2,1}}\right)$$

for all $0 \leq t \leq T$. \hfill \Box

It follows from Proposition 1.2 and Proposition 4.11 that

$$M(t) \leq C_3 \quad \text{for all } t.$$

Hence we obtain the desired decay estimate in Theorem 1.3.

Acknowledgment: The author would like to thank Professor Yoshiyuki Kagei and Professor Takayuki Kobayashi for their valuable advice.
References

List of MI Preprint Series, Kyushu University
The Global COE Program
Math-for-Industry Education & Research Hub

MI

MI2008-1 Takahiro ITO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Abstract collision systems simulated by cellular automata

MI2008-2 Eiji ONODERA
The initial value problem for a third-order dispersive flow into compact almost Hermitian manifolds

MI2008-3 Hiroaki KIDO
On isosceles sets in the 4-dimensional Euclidean space

MI2008-4 Hirofumi NOTSU
Numerical computations of cavity flow problems by a pressure stabilized characteristic-curve finite element scheme

MI2008-5 Yoshiyasu OZEKI
Torsion points of abelian varieties with values in infinite extensions over a p-adic field

MI2008-6 Yoshiyuki TOMIYAMA
Lifting Galois representations over arbitrary number fields

MI2008-7 Takehiro HIROTSU & Setsuo TANIGUCHI
The random walk model revisited

MI2008-8 Silvia GANDY, Masaaki KANNO, Hirokazu ANAI & Kazuhiro YOKOYAMA
Optimizing a particular real root of a polynomial by a special cylindrical algebraic decomposition

MI2008-9 Kazufumi KIMOTO, Sho MATSUMOTO & Masato WAKAYAMA
Alpha-determinant cyclic modules and Jacobi polynomials

MI2008-10 Sangyeol LEE & Hiroki MASUDA
Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Observed Univariate SDE

MI2008-11 Hiroyuki CHIHARA & Eiji ONODERA
A third order dispersive flow for closed curves into almost Hermitian manifolds

MI2008-12 Takehiko KINOSHITA, Kouji HASHIMOTO and Mitsuhiro T. NAKAO
On the L^2 a priori error estimates to the finite element solution of elliptic problems with singular adjoint operator

MI2008-13 Jacques FARAUT and Masato WAKAYAMA
Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek polynomials
Takashi NAKAMURA
Riemann zeta-values, Euler polynomials and the best constant of Sobolev inequality

Some topics related to Hurwitz-Lerch zeta functions

Yasuhide FUKUMOTO
Global time evolution of viscous vortex rings

Hidetoshi MATSUI & Sadanori KONISHI
Regularized functional regression modeling for functional response and predictors

Variable selection for functional regression model via the L_1 regularization

Shuichi KAWANO & Sadanori KONISHI
Nonlinear logistic discrimination via regularized Gaussian basis expansions

Toshiro HIRANOUCHI & Yuichiro TAGUCHII
Flat modules and Groebner bases over truncated discrete valuation rings

Kenji KAJIWARA & Yasuhiro OHTA
Bilinearization and Casorati determinant solutions to non-autonomous 1+1 dimensional discrete soliton equations

Yoshiyuki KAGEI
Asymptotic behavior of solutions of the compressible Navier-Stokes equation around the plane Couette flow

Takeshi TAKAISHI & Masato KIMURA
Phase field model for mode III crack growth in two dimensional elasticity

Shingo SAITO
Generalisation of Mack’s formula for claims reserving with arbitrary exponents for the variance assumption

Kenji KAJIWARA, Masanobu KANEKO, Atsushi NOBE & Teruhisa TSUDA
Ultradiscretization of a solvable two-dimensional chaotic map associated with the Hesse cubic curve

Hypergeometric \mathcal{H}-functions of the q-Painlevé system of type $E_8^{(1)}$

Hidenao IWANE, Hitoshi YANAMI, Hirokazu ANAI & Kazuhiro YOKOYAMA
A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic Decomposition for Quantifier Elimination

On Gaussian decay estimates of solutions to some linear elliptic equations and its applications
MI2009-15 Yuya ISHIHARA & Yoshiyuki KAGEI
Large time behavior of the semigroup on L^p spaces associated with the linearized compressible Navier-Stokes equation in a cylindrical domain

MI2009-16 Chikashi ARITA, Atsuo KUNIBA, Kazumitsu SAKAI & Tsuyoshi SAWABE
Spectrum in multi-species asymmetric simple exclusion process on a ring

MI2009-17 Masato WAKAYAMA & Keitaro YAMAMOTO
Non-linear algebraic differential equations satisfied by certain family of elliptic functions

MI2009-18 Me Me NAING & Yasuhide FUKUMOTO
Local Instability of an Elliptical Flow Subjected to a Coriolis Force

MI2009-19 Mitsunori KAYANO & Sadanori KONISHI
Sparse functional principal component analysis via regularized basis expansions and its application

MI2009-20 Shuichi KAWANO & Sadanori KONISHI
Semi-supervised logistic discrimination via regularized Gaussian basis expansions

MI2009-21 Hiroshi YOSHIDA, Yoshihiro MIWA & Masanobu KANEKO
Elliptic curves and Fibonacci numbers arising from Lindenmayer system with symbolic computations

MI2009-22 Eiji ONODERA
A remark on the global existence of a third order dispersive flow into locally Hermitian symmetric spaces

MI2009-23 Stjepan LUGOMER & Yasuhide FUKUMOTO
Generation of ribbons, helicoids and complex scherk surface in laser-matter Interactions

MI2009-24 Yu KAWAKAMI
Recent progress in value distribution of the hyperbolic Gauss map

MI2009-25 Takehiko KINOSHITA & Mitsuhiko T. NAKAO
On very accurate enclosure of the optimal constant in the a priori error estimates for H^2_0-projection

MI2009-26 Manabu YOSHIDA
Ramification of local fields and Fontaine’s property (Pm)

MI2009-27 Yu KAWAKAMI
Value distribution of the hyperbolic Gauss maps for flat fronts in hyperbolic threespace

MI2009-28 Masahisa TABATA
Numerical simulation of fluid movement in an hourglass by an energy-stable finite element scheme

MI2009-29 Yoshiyuki KAGEI & Yasunori MAEKAWA
Asymptotic behaviors of solutions to evolution equations in the presence of translation and scaling invariance
MI2009-30 Yoshiyuki KAGEI & Yasunori MAEKAWA
On asymptotic behaviors of solutions to parabolic systems modelling chemotaxis

MI2009-31 Masato WAKAYAMA & Yoshinori YAMASAKI
Hecke’s zeros and higher depth determinants

MI2009-32 Olivier PIRONNEAU & Masahisa TABATA
Stability and convergence of a Galerkin-characteristics finite element scheme of lumped mass type

MI2009-33 Chikashi ARITA
Queueing process with excluded-volume effect

MI2009-34 Kenji KAJIWARA, Nobutaka NAKAZONO & Teruhisa TSUDA
Projective reduction of the discrete Painlevé system of type$(A_2 + A_1)^{(1)}$

MI2009-35 Yosuke MIZUYAMA, Takamasa SHINDE, Masahisa TABATA & Daisuke TAGAMI
Finite element computation for scattering problems of micro-hologram using DtN map

MI2009-36 Reiichiro KAWAI & Hiroki MASUDA
Exact simulation of finite variation tempered stable Ornstein-Uhlenbeck processes

MI2009-37 Hiroki MASUDA
On statistical aspects in calibrating a geometric skewed stable asset price model

MI2010-1 Hiroki MASUDA
Approximate self-weighted LAD estimation of discretely observed ergodic Ornstein-Uhlenbeck processes

MI2010-2 Reiichiro KAWAI & Hiroki MASUDA
Infinite variation tempered stable Ornstein-Uhlenbeck processes with discrete observations

MI2010-3 Kei HIROSE, Shuichi KAWANO, Daisuke MIIKE & Sadanori KONISHI
Hyper-parameter selection in Bayesian structural equation models

MI2010-4 Nobuyuki IKEDA & Setsuo TANIGUCHI
The Itô-Nisio theorem, quadratic Wiener functionals, and 1-solitons

MI2010-5 Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling and detecting change point via the relevance vector machine

MI2010-6 Shuichi KAWANO, Toshihiro MISUMI & Sadanori KONISHI
Semi-supervised logistic discrimination via graph-based regularization

MI2010-7 Teruhisa TSUDA
UC hierarchy and monodromy preserving deformation

MI2010-8 Takahiro ITO
Abstract collision systems on groups
MI2010-9	Hiroshi YOSHIDA, Kinji KIMURA, Naoki YOSHIDA, Junko TANAKA & Yoshihiro MIWA
MI2010-10	Kei HIROSE & Sadanori KONISHI
MI2010-11	Katsusuke NABESHIMA & Hiroshi YOSHIDA
MI2010-12	Yoshiyuki KAGEI, Yu NAGAFUCHI & Takeshi SUDOU
MI2010-13	Reiichiro KAWAI & Hiroki MASUDA
MI2010-14	Yoshiyasu OZEKI
MI2010-15	Me Me NAING & Yasuhide FUKUMOTO
MI2010-16	Yu KAWAKAMI & Daisuke NAKAJO
MI2010-17	Kazunori YASUTAKE
MI2010-18	Toshimitsu TAKAESU
MI2010-19	Reiichiro KAWAI & Hiroki MASUDA
MI2010-20	Yasuhide FUKUMOTO, Makoto HIROTA & Youichi MIE
MI2010-21	Hiroki MASUDA
MI2010-22	Toshimitsu TAKAESU
MI2010-23	Takahiro ITO, Mitsuhiko FUJIO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
MI2010-24	Toshimitsu TAKAESU

MI2010-9: Hiroshi YOSHIDA, Kinji KIMURA, Naoki YOSHIDA, Junko TANAKA & Yoshihiro MIWA
An algebraic approach to underdetermined experiments

MI2010-10: Kei HIROSE & Sadanori KONISHI
Variable selection via the grouped weighted lasso for factor analysis models

MI2010-11: Katsusuke NABESHIMA & Hiroshi YOSHIDA
Derivation of specific conditions with Comprehensive Groebner Systems

MI2010-12: Yoshiyuki KAGEI, Yu NAGAFUCHI & Takeshi SUDOU
Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Poiseuille type flow

MI2010-13: Reiichiro KAWAI & Hiroki MASUDA
On simulation of tempered stable random variates

MI2010-14: Yoshiyasu OZEKI
Non-existence of certain Galois representations with a uniform tame inertia weight

MI2010-15: Me Me NAING & Yasuhide FUKUMOTO
Local Instability of a Rotating Flow Driven by Precession of Arbitrary Frequency

MI2010-16: Yu KAWAKAMI & Daisuke NAKAJO
The value distribution of the Gauss map of improper affine spheres

MI2010-17: Kazunori YASUTAKE
On the classification of rank 2 almost Fano bundles on projective space

MI2010-18: Toshimitsu TAKAESU
Scaling limits for the system of semi-relativistic particles coupled to a scalar bose field

MI2010-19: Reiichiro KAWAI & Hiroki MASUDA
Local asymptotic normality for normal inverse Gaussian Lévy processes with high-frequency sampling

MI2010-20: Yasuhide FUKUMOTO, Makoto HIROTA & Youichi MIE
Lagrangian approach to weakly nonlinear stability of an elliptical flow

MI2010-21: Hiroki MASUDA
Approximate quadratic estimating function for discretely observed Lévy driven SDEs with application to a noise normality test

MI2010-22: Toshimitsu TAKAESU
A Generalized Scaling Limit and its Application to the Semi-Relativistic Particles System Coupled to a Bose Field with Removing Ultraviolet Cutoffs

MI2010-23: Takahiro ITO, Mitsuhiko FUJIO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Composition, union and division of cellular automata on groups

MI2010-24: Toshimitsu TAKAESU
A Hardy’s Uncertainty Principle Lemma in Weak Commutation Relations of Heisenberg-Lie Algebra
MI2010-25 Toshimitsu TAKAESU
On the Essential Self-Adjointness of Anti-Commutative Operators

MI2010-26 Reiichiro KAWAI & Hiroki MASUDA
On the local asymptotic behavior of the likelihood function for Meixner Lévy processes under high-frequency sampling

MI2010-27 Chikashi ARITA & Daichi YANAGISAWA
Exclusive Queueing Process with Discrete Time

MI2010-28 Jun-ichi INOYUKI, Kenji KAJIWARA, Nozomu MATSUURA & Yasuhiro OHTA
Motion and Bäcklund transformations of discrete plane curves

MI2010-29 Takanori YASUDA, Masaya YASUDA, Takeshi SHIMOMURA & Jun KOGURE
On the Number of the Pairing-friendly Curves

MI2010-30 Chikashi ARITA & Kohei MOTEGI
Spin-spin correlation functions of the q-VBS state of an integer spin model

MI2010-31 Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling and spike detection via Gaussian basis expansions

MI2010-32 Nobutaka NAKAZONO
Hypergeometric τ functions of the q-Painlevé systems of type $(A_2 + A_1)^{(1)}$

MI2010-33 Yoshiyuki KAGEI
Global existence of solutions to the compressible Navier-Stokes equation around parallel flows

MI2010-34 Nobushige KUARIO, Masato WAKAYAMA & Yoshinori YAMASAKI
Milnor-Selberg zeta functions and zeta regularizations

MI2010-35 Kissani PERERA & Yoshihiro MIZOGUCHI
Laplacian energy of directed graphs and minimizing maximum outdegree algorithms

MI2010-36 Takanori YASUDA
CAP representations of inner forms of $Sp(4)$ with respect to Klingen parabolic subgroup

MI2010-37 Chikashi ARITA & Andreas SCHADSCHNEIDER
Dynamical analysis of the exclusive queueing process

MI2011-1 Yasuhide FUKUMOTO& Alexander B. SAMOKHIN
Singular electromagnetic modes in an anisotropic medium

MI2011-2 Hiroki KONDO, Shingo SAITO & Setsuo TANIGUCHI
Asymptotic tail dependence of the normal copula

MI2011-3 Takehiro HIROTSU, Hiroki KONDO, Shingo SAITO, Takuya SATO, Tatsushi TANAKA & Setsuo TANIGUCHI
Anderson-Darling test and the Malliavin calculus

MI2011-4 Hiroshi INOUE, Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling via Compressed Sensing
MI2011-5 Hiroshi INOUE
Implications in Compressed Sensing and the Restricted Isometry Property

MI2011-6 Daeju KIM & Sadanori KONISHI
Predictive information criterion for nonlinear regression model based on basis expansion methods

MI2011-7 Shohei TATEISHI, Chiaki KINJYO & Sadanori KONISHI
Group variable selection via relevance vector machine

MI2011-8 Jan BREZINA & Yoshiyuki KAGEI
Decay properties of solutions to the linearized compressible Navier-Stokes equation around time-periodic parallel flow
Group variable selection via relevance vector machine

MI2011-9 Chikashi ARITA, Arvind AYYER, Kirone MALLICK & Sylvain PROLHAC
Recursive structures in the multispecies TASEP

MI2011-10 Kazunori YASUTAKE
On projective space bundle with nef normalized tautological line bundle

MI2011-11 Hisashi ANDO, Mike HAY, Kenji KAJIWARA & Tetsu MASUDA
An explicit formula for the discrete power function associated with circle patterns of Schramm type

MI2011-12 Yoshiyuki KAGEI
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a parallel flow

MI2011-13 Vladimír CHALUPECKÝ & Adrian MUNTEAN
Semi-discrete finite difference multiscale scheme for a concrete corrosion model: approximation estimates and convergence

MI2011-14 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA & Yasuhiro OHTA
Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves

MI2011-15 Hiroshi INOUE
A generalization of restricted isometry property and applications to compressed sensing

MI2011-16 Yu KAWAKAMI
A ramification theorem for the ratio of canonical forms of flat surfaces in hyperbolic three-space

MI2011-17 Naoyuki KAMIYAMA
Matroid intersection with priority constraints

MI2012-1 Kazufumi KIMOTO & Masato WAKAYAMA
Spectrum of non-commutative harmonic oscillators and residual modular forms

MI2012-2 Hiroki MASUDA
Mighty convergence of the Gaussian quasi-likelihood random fields for ergodic Levy driven SDE observed at high frequency
MI2012-3 Hiroshi INOUE
A Weak RIP of theory of compressed sensing and LASSO

MI2012-4 Yasuhide FUKUMOTO & Youich MIE
Hamiltonian bifurcation theory for a rotating flow subject to elliptic straining field

MI2012-5 Yu KAWAKAMI
On the maximal number of exceptional values of Gauss maps for various classes of surfaces

MI2012-6 Marcio GAMEIRO, Yasuaki HIRAOKA, Shunsuke IZUMI, Miroslav KRAMAR, Konstantin MISCHAIKOW & Vidit NANDA
Topological Measurement of Protein Compressibility via Persistence Diagrams

MI2012-7 Nobutaka NAKAZONO & Seiji NISHIOKA
Solutions to a q-analog of Painlevé III equation of type $D^{(1)}_7$

MI2012-8 Naoyuki KAMIYAMA
A new approach to the Pareto stable matching problem

MI2012-9 Jan BREZINA & Yoshiyuki KAGEI
Spectral properties of the linearized compressible Navier-Stokes equation around time-periodic parallel flow

MI2012-10 Jan BREZINA
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a time-periodic parallel flow

MI2012-11 Daeju KIM, Shuichi KAWANO & Yoshiyuki NINOMIYA
Adaptive basis expansion via the extended fused lasso

MI2012-12 Masato WAKAYAMA
On simplicity of the lowest eigenvalue of non-commutative harmonic oscillators

MI2012-13 Masatoshi OKITA
On the convergence rates for the compressible Navier-Stokes equations with potential force

MI2013-1 Abduuwali PAERHATI & Yasuhide FUKUMOTO
A Counter-example to Thomson-Tait-Chetayev’s Theorem

MI2013-2 Yasuhide FUKUMOTO & Hirofumi SAKUMA
A unified view of topological invariants of barotropic and baroclinic fluids and their application to formal stability analysis of three-dimensional ideal gas flows

MI2013-3 Hiroki MASUDA
Asymptotics for functionals of self-normalized residuals of discretely observed stochastic processes

MI2013-4 Naoyuki KAMIYAMA
On Counting Output Patterns of Logic Circuits

MI2013-5 Hiroshi INOUE
RIPless Theory for Compressed Sensing
MI2013-6 Hiroshi INOUE
 Improved bounds on Restricted isometry for compressed sensing

MI2013-7 Hidetoshi MATSUI
 Variable and boundary selection for functional data via multiclass logistic regression modeling

MI2013-8 Hidetoshi MATSUI
 Variable selection for varying coefficient models with the sparse regularization

MI2013-9 Naoyuki KAMIYAMA
 Packing Arborescences in Acyclic Temporal Networks

MI2013-10 Masato WAKAYAMA
 Equivalence between the eigenvalue problem of non-commutative harmonic oscillators and existence of holomorphic solutions of Heun’s differential equations, eigenstates degeneration, and Rabi’s model

MI2013-11 Masatoshi OKITA
 Optimal decay rate for strong solutions in critical spaces to the compressible Navier-Stokes equations