Instability of plane Poiseuille flow in viscous compressible gas

Yoshiyuki Kagei
& Takaaki Nishida

MI 2014-11

(Received September 12, 2014)
Instability of plane Poiseuille flow in viscous compressible gas

Yoshiyuki Kagei1 and Takaaki Nishida2

1 Faculty of Mathematics, Kyushu University, Nishi-ku, Motooka 744, Fukuoka 819-0395, Japan

2 Department of Applied Complex System, Kyoto University, Yoshida Honmachi, Sakyoku, Kyoto, 606-8317, Japan

Abstract

Instability of plane Poiseuille flow in viscous compressible gas is investigated. A condition for the Reynolds and Mach numbers is given in order for plane Poiseuille flow to be unstable. It turns out that plane Poiseuille flow is unstable for Reynolds numbers much less than the critical Reynolds number for the incompressible flow when the Mach number is suitably large. It is proved by the analytic perturbation theory that the linearized operator around plane Poiseuille flow has eigenvalues with positive real part when the instability condition for the Reynolds and Mach numbers is satisfied.

Mathematics Subject Classification (2000). 35Q30, 76N15.

Keywords. Compressible Navier-Stokes equation, Poiseuille flow, instability.

1 Introduction

This paper is concerned with the stability of plane Poiseuille flow of the compressible Navier-Stokes equation. We consider the following system of equations

\[
\partial_t \tilde{\rho} + \text{div}(\tilde{\rho} \tilde{v}) = 0, \quad (1.1)
\]

\[
\tilde{\rho} (\partial_t \tilde{v} + \tilde{v} \cdot \nabla \tilde{v}) - \mu \Delta \tilde{v} - (\mu + \mu') \nabla \text{div} \tilde{v} + \nabla \tilde{P}(\tilde{\rho}) = \tilde{\rho} \tilde{g}, \quad (1.2)
\]

in a 3-dimensional infinite layer \(\Omega_\ell = \mathbb{R}^2 \times (0, \ell)\):

\[
\Omega_\ell = \{ \tilde{x} = (\tilde{x}', \tilde{x}_3) : \tilde{x}' = (\tilde{x}_1, \tilde{x}_2) \in \mathbb{R}^2, 0 < \tilde{x}_3 < \ell \}.
\]
Here $\tilde{\rho} = \tilde{\rho}(\tilde{x}, \tilde{t})$ and $\tilde{v} = \tilde{\tau}(\tilde{v}^1(\tilde{x}, \tilde{t}), \tilde{v}^2(\tilde{x}, \tilde{t}), \tilde{v}^3(\tilde{x}, \tilde{t}))$ denote the density and velocity at time $\tilde{t} \geq 0$ and position $\tilde{x} \in \Omega_\ell$, respectively; $\tilde{P} = \tilde{P}(\tilde{\rho})$ is the pressure that is assumed to be a smooth function of $\tilde{\rho}$ satisfying

$$\tilde{P}'(\rho_*) > 0$$

for a given constant $\rho_* > 0$; μ and μ' are the viscosity and the second viscosity coefficients, respectively, that are assumed to be constants and satisfy

$$\mu > 0, \quad \frac{2}{3}\mu + \mu' \geq 0.$$

div, ∇ and Δ denote the usual divergence, gradient and Laplacian with respect to \tilde{x}; and \tilde{g} is a given external force. Here and in what follows \top stands for the transposition.

We assume that the external force \tilde{g} takes the form

$$\tilde{g} = ge_1,$$

where g is a positive constant and $e_1 = \top(1, 0, 0) \in \mathbb{R}^3$.

The system (1.1)–(1.2) is considered under the boundary condition

$$\tilde{\tau}|_{\tilde{x}_3 = 0, \ell} = 0. \quad (1.3)$$

It is easily seen that (1.1)–(1.3) has a stationary solution $\tilde{u}_s = \top(\tilde{\phi}_s, \tilde{v}_s)$ satisfying

$$\tilde{\phi}_s = \rho_*, \quad \tilde{v}_s = \frac{\rho_* g}{2\mu} \tilde{x}_3(\ell - \tilde{x}_3)e_1,$$

that is the so-called plane Poiseuille flow.

The aim of this paper is to give a condition for the Reynolds and Mach numbers in order for plane Poiseuille flow to be unstable.

The function \tilde{u}_s is also a stationary solution of the incompressible Navier-Stokes equation

$$\text{div} \tilde{v} = 0, \quad (1.4)$$

$$\rho_*(\partial_t \tilde{v} + \tilde{v} \cdot \nabla \tilde{v}) - \mu \Delta \tilde{v} + \nabla \tilde{p} = 0, \quad (1.5)$$

$$\tilde{v}|_{\tilde{x}_3 = 0, \ell} = 0 \quad (1.6)$$

with $\tilde{p} = \rho_* g \tilde{x}_1$.

It is well known that stationary parallel flow of the incompressible Navier-Stokes equation is in general stable under arbitrary size of initial perturbations in L^2 if the Reynolds number R is sufficiently small. Furthermore, plane Poiseuille flow is stable under sufficiently small initial perturbations if $R < R_c$ for a critical number $R_c \sim 5772$, and unstable if $R > R_c$.

In the case of the compressible Navier-Stokes equation, Iooss-Padula [1] investigated the linearized stability of stationary parallel flow in a cylindrical domain under perturbations that are periodic in the unbounded direction of the domain. It was
shown in [1] that stationary parallel flow is linearly stable for suitably small Reynolds number. In [2] (cf., [3]), nonlinear stability of parallel flow in the infinite layer Ω_ℓ was studied; and it was proved that parallel flow is asymptotically stable under perturbations sufficiently small in some Sobolev space over Ω_ℓ if the Reynolds and Mach numbers are sufficiently small. In this paper we will show that plane Poiseuille flow of (1.1)–(1.2) is linearly unstable if \(\frac{3}{Re} + \frac{1}{Re'} \leq \frac{30}{280} - \frac{1}{Ma^2} \), provided that $Ma^2 > 280$. Here Re, Re' and Ma are the numbers given by \(Re = \frac{\rho_* \ell V_0^2}{2\mu} \), \(Re' = \frac{\rho_* \ell V_0^2}{2\mu'} \), and $Ma = \frac{M}{8}$ with the Reynolds number R, second Reynolds number R' and Mach number M defined by

\[
R = \frac{\rho_* \ell V_0^2}{2\mu}, \quad R' = \frac{\rho_* \ell V_0^2}{2\mu'}, \quad M = \frac{\sqrt{\mathcal{P}'(\rho_*)}}{V_0}.
\]

Here V_0 is the maximum velocity $\frac{\rho_* \ell V_0^2}{2\mu}$ of plane Poiseuille flow. In particular, this result shows that there appears an instability even when $R \ll R_c$ in the case of compressible flows.

To prove our result, we consider the spectrum of the linearized operator under periodic boundary condition in $x' = (x_1, x_2)$ to find eigenvalues with positive real part. As in the case of cylindrical domain analyzed in [1], the linearized operator generates a C_0-semigroup on $L^2_{\text{per}}(\mathcal{P}_{\alpha_1, \alpha_2} \times (0, 1))$. Here $\mathcal{P}_{\alpha_1, \alpha_2}$ denotes the basic period cell $\left[-\frac{\pi}{\alpha_1}, \frac{\pi}{\alpha_1} \right] \times \left[-\frac{\pi}{\alpha_2}, \frac{\pi}{\alpha_2} \right]$ with $\alpha_1, \alpha_2 > 0$. We will investigate the spectrum of the linearized operator on $L^2_{\text{per}}(\mathcal{P}_{\alpha_1, \alpha_2} \times (0, 1))$ for sufficiently small α_1 and α_2 by using the analytic perturbation theory to obtain our instability criterion mentioned above.

This paper is organized as follows. In section 2 we deduce a non-dimensional form of system (1.1)–(1.2) and rewrite it into the system of equations for perturbations. We also introduce notations used in this paper. In section 3 we state the main result of this paper precisely. Sections 4–6 are devoted to the proof of the main result. In section 4 we consider the Fourier series expansion in $x' = (x_1, x_2) \in \mathcal{P}_{\alpha_1, \alpha_2}$ and reduce the spectral analysis of the linearized operator to the one for the Fourier coefficients that are functions of x_3. Section 5 is devoted to the study of the spectrum of the zero frequency part of the linearized operator. In section 6 we investigate the spectrum of the low frequency part of the linearized operator by the analytic perturbation theory and complete the proof of our instability result.

2 Preliminaries

In this section we first deduce a non-dimensional form of system (1.1)–(1.2) and then give the system of equations for perturbations. In the end of this section we introduce function spaces used in this paper.

We introduce the following non-dimensional variables:

\[
\tilde{x} = \ell x, \quad \tilde{t} = \frac{\ell}{V} t, \quad \tilde{v} = V v, \quad \tilde{\rho} = \rho_* \rho, \quad \tilde{P} = \rho_* V^2 P
\]
with
\[V = \frac{\rho_s g \ell^2}{\mu}. \]

Under this transformation, \(\Omega_\ell \) is transformed into \(\Omega = \Omega_1 \):
\[\Omega = \{ x = (x', x_3) : x' = (x_1, x_2) \in \mathbb{R}^2, \ 0 < x_3 < 1 \}. \]

Using the relations \(\partial \tilde{x} = \frac{1}{\ell} \partial x \), \(\partial \tilde{t} = \frac{V}{\ell} \partial t \), we see that (1.1) and (1.2) are transformed into
\[\partial_t \rho + \text{div} (\rho v) = 0, \]
(2.1)
\[\rho (\partial_t v + v \cdot \nabla v) - \nu \Delta v - (\nu + \nu') \nabla \text{div} v + \nabla P(\rho) = \nu \rho e_1. \]
(2.2)

Here, \(\text{div} \), \(\nabla \) and \(\Delta \) denote the divergence, gradient and Laplacian with respect to \(x \); and \(\nu \) and \(\nu' \) are the non-dimensional parameters given by
\[\nu = \frac{\mu}{\rho_s \ell V}, \quad \nu' = \frac{\mu'}{\rho_s \ell V}. \]

To derive (2.2) we have used the relation \(\ell g \rho_0^2 = \nu \). The assumption \(\tilde{P}'(\rho_*) > 0 \) is restated as
\[P'(1) > 0. \]

We next introduce plane Poiseuille flow. Let us consider the stationary problem
\[\text{div} (\rho v) = 0, \]
(2.3)
\[\rho v \cdot \nabla v - \nu \Delta v - (\nu + \nu') \nabla \text{div} v + \nabla P(\rho) = \nu \rho e_1 \]
(2.4)
in \(\Omega \) under the boundary condition
\[v|_{x_3=0,1} = 0. \]
(2.5)

Proposition 2.1. Problem (2.3)–(2.5) has a stationary solution (plane Poiseuille flow) \(u_s = \top (\rho_s, v_s) \), where
\[\rho_s = 1, \quad v_s = \top (v_s^1(x_3), 0, 0), \quad v_s^1(x_3) = \frac{1}{2}(-x_3^2 + x_3). \]

Proof. Set \(\rho = 1 \) and \(v = \top (v^1(x_3), 0, 0) \) in (2.3) and (2.4). Then, since
\[\text{div} v = \partial_{x_3} v^1(x_3) = 0, \quad v \cdot \nabla v^1 = v^1 \partial_{x_3} v^1(x_3) = 0, \]
together with (2.5), we have \(-\partial_{x_3}^2 v^1 = 1 \) and \(v^1|_{x_3=0,1} = 0 \), from which we obtain
\[v^1(x_3) = \frac{1}{2}(-x_3^2 + x_3). \]
This completes the proof. \(\square \)

We next derive the system of equations for perturbations. We substitute \(u(t) = \top (\phi(t), w(t)) \equiv \top (\gamma^2(\rho(t) - \rho_*), v(t) - v_s) \) into (2.1) and (2.2), where \(\gamma \) is the non-dimensional number given by
\[\gamma = \sqrt{\frac{P'(\rho_*)}{V}}. \]
Noting that \(\rho_s = 1 \), \(v_s = \nabla (v_s^1(x_3), 0, 0) \) and \(-\Delta v_s = e_1 \), we obtain the following system of equations
\[
\partial_t \phi + v_s^1 \partial_{x_1} \phi + \gamma^2 \text{div } w = f^0, \tag{2.6}
\]
\[
\partial_t w - \nu \Delta w - \nu \nabla \text{div } w + \nabla \phi - \frac{\nu}{\gamma^2} \phi e_1 + v_s^1 \partial_{x_1} w + (\partial_{x_3} v_s^1) w^3 e_1 = f. \tag{2.7}
\]
Here \(e_1 = \nabla (1, 0, 0) \in \mathbb{R}^3 \); and \(f^0 \) and \(f = \nabla (f', f^3) \) with \(f' = \nabla (f^1, f^2) \) denote the nonlinearities:
\[
f^0 = -\text{div} (\phi w),
\]
\[
f = -w \cdot \nabla w - \frac{\phi}{\gamma^2 + \phi} \left(\nu \Delta w + \frac{\nu}{\gamma} \phi e_1 + \nu \nabla \text{div } w \right) + \frac{\phi^2}{\gamma} \nabla \left(P^{(1)} (\gamma^{-2} \phi) \right) + \frac{\phi^2}{\gamma^2 (\gamma^{-2} \phi)} \nabla \left(P(1 + \gamma^{-2} \phi) \right) + \frac{1}{\gamma^4} \nabla \left(P^{(2)} (\gamma^{-2} \phi)^2 \right),
\]
where
\[
P^{(1)} (\gamma^{-2} \phi) = \int_0^1 P'(1 + \theta \gamma^{-2} \phi) \, d\theta,
\]
and
\[
P^{(2)} (\gamma^{-2} \phi) = \int_0^1 (1 - \theta) P''(1 + \theta \gamma^{-2} \phi) \, d\theta.
\]
We consider (2.6)–(2.7) under the boundary conditions
\[
w |_{x_3 = 0, 1} = 0, \quad \phi, \, w: \frac{2\pi}{\alpha_j}-\text{periodic in } x_j \quad (j = 1, 2), \tag{2.8}
\]
and the initial condition
\[
u |_{t=0} = u_0 = \nabla (\phi_0, w_0). \tag{2.9}
\]
Here \(\alpha_1 \) and \(\alpha_2 \) are given positive numbers.

We are interested in the instability of plane Poiseuille flow. We will thus consider the linearized problem for problem (2.6)–(2.9), i.e., with \(f^0 = 0 \) and \(f = 0 \).

In the remaining of this section we introduce some notations used in this paper. For given \(\alpha_1, \alpha_2 > 0 \), we denote the basic period cell by
\[
P_{\alpha_1, \alpha_2} = \left[-\frac{\pi}{\alpha_1}, \frac{\pi}{\alpha_1} \right] \times \left[-\frac{\pi}{\alpha_2}, \frac{\pi}{\alpha_2} \right].
\]
We set
\[
\Omega_{\alpha_1, \alpha_2} = P_{\alpha_1, \alpha_2} \times (0, 1).
\]
We denote by \(C^\infty_{0, \text{per}} (\Omega_{\alpha_1, \alpha_2}) \) the space of restrictions of functions in \(C^\infty (\Omega) \) which are \(P_{\alpha_1, \alpha_2} \)-periodic in \(x' = (x_1, x_2) \) and vanish near \(x_3 = 0, 1 \). We set
\[
L^2_{\text{per}} (\Omega_{\alpha_1, \alpha_2}) = \text{the } L^2 (\Omega_{\alpha_1, \alpha_2})-\text{closure of } C^\infty_{0, \text{per}} (\Omega_{\alpha_1, \alpha_2}),
\]
\[
H^1_{0, \text{per}} (\Omega_{\alpha_1, \alpha_2}) = \text{the } H^1 (\Omega_{\alpha_1, \alpha_2})-\text{closure of } C^\infty_{0, \text{per}} (\Omega_{\alpha_1, \alpha_2}).
\]
We note that if \(f \in H^1_{0, \text{per}} (\Omega_{\alpha_1, \alpha_2}) \), then \(f |_{x_3 = -\pi/\alpha_j} = f |_{x_3 = \pi/\alpha_j} \quad (j = 1, 2) \) and \(f |_{x_3 = 0, 1} = 0 \).
For simplicity the set of all vector fields whose components are in \(L^2_{	ext{per}}(\Omega_{\alpha_1, \alpha_2}) \) (resp. \(H^1_{0, \text{per}}(\Omega_{\alpha_1, \alpha_2}) \)) is also denoted by \(L^2_{\text{per}}(\Omega_{\alpha_1, \alpha_2}) \) (resp. \(H^1_{0, \text{per}}(\Omega_{\alpha_1, \alpha_2}) \)) if no confusion will occur.

We also use notation \(L^2_{\text{per}}(\Omega_{\alpha_1, \alpha_2}) \) for the set of all \(u = \mathcal{T}(\phi, w) \) with \(\phi \in L^2_{\text{per}}(\Omega_{\alpha_1, \alpha_2}) \) and \(w = \mathcal{T}(w^1, w^2, w^3) \in L^2_{\text{per}}(\Omega_{\alpha_1, \alpha_2}) \) if no confusion will occur. The inner product of \(u_j = \mathcal{T}(\phi_j, w_j) \in L^2_{\text{per}}(\Omega_{\alpha_1, \alpha_2}) \) \((j = 1, 2)\) is defined by

\[
(u_1, u_2) = \frac{1}{\gamma^2} \int_{\Omega_{\alpha_1, \alpha_2}} \phi_1(x) \overline{\phi_2(x)} \, dx + \int_{\Omega_{\alpha_1, \alpha_2}} w_1(x) \cdot \overline{w_2(x)} \, dx,
\]

where \(\overline{z} \) denotes the complex conjugate of \(z \).

We define \(L^2(0, 1) \) the usual \(L^2 \) space on \((0, 1)\) with norm \(\| \cdot \|_{L^2} \), and, likewise, by \(H^k(0, 1) \) the \(k \) th order \(L^2 \)-Sobolev space on \((0, 1)\) with norm \(\| \cdot \|_{H^k} \). The \(H^1 \)-closure of \(C_0^\infty(0, 1) \) is denoted by \(H^1_0(0, 1) \). As in the case of functions on \(\Omega_{\alpha_1, \alpha_2} \), function spaces of vector fields \(w = \mathcal{T}(w^1, w^2, w^3) \) and, also, those of \(u = \mathcal{T}(\phi, w) \), are simply denoted by \(L^2(0, 1) \), \(H^1_0(0, 1) \), and so on, if no confusion will occur. We define an inner product \(\langle u_1, u_2 \rangle \) of \(u_j = \mathcal{T}(\phi_j, w_j) \in L^2(0, 1) \) \((j = 1, 2)\), by

\[
\langle u_1, u_2 \rangle = \frac{1}{\gamma^2} \int_0^1 \phi_1(x_3) \overline{\phi_2(x_3)} \, dx_3 + \int_0^1 w_1(x_3) \cdot \overline{w_2(x_3)} \, dx_3.
\]

The mean value of a function \(\phi(x_3) \) over \((0, 1)\) is denoted by \(\langle \phi \rangle \):

\[
\langle \phi \rangle = \int_0^1 \phi(x_3) \, dx_3.
\]

The set of all \(\phi \in L^2(0, 1) \) with \(\langle \phi \rangle = 0 \) is denoted by \(L^2_*(0, 1) \), i.e.,

\[
L^2_*(0, 1) = \{ \phi \in L^2(0, 1) : \langle \phi \rangle = 0 \}.
\]

We define \(4 \times 4 \) diagonal matrices \(Q_0 \) and \(\tilde{Q} \) by

\[
Q_0 = \text{diag} \, (1, 0, 0, 0), \quad \tilde{Q} = \text{diag} \, (0, 1, 1, 1).
\]

Note that

\[
Q_0 u = \mathcal{T}(\phi, 0), \quad \tilde{Q} u = \mathcal{T}(0, w) \quad \text{for} \quad u = \mathcal{T}(\phi, w).
\]

We denote the resolvent set of a closed operator \(A \) by \(\rho(A) \) and the spectrum of \(A \) by \(\sigma(A) \). The kernel and the range of \(A \) are denoted by \(\text{Ker} \, A \) and \(\text{R} \, A \), respectively.

3 Main result

In this section we state our main result of this paper.

The linearized problem is written as

\[
\partial_t \phi + v_s^1 \partial_{x_1} \phi + \gamma^2 \text{div} \, w = 0, \quad (3.1)
\]
\[\partial_t w - \nu \Delta w - \nu \nabla \text{div } w + \nabla \phi - \frac{\nu}{\gamma^2} \phi e_1 + v'_s \partial_{x_1} w + (\partial_{x_3} v'_s \omega^4) w^3 e_1 = 0, \tag{3.2} \]

\[w|_{x_3 = 0} = 0, \quad \phi, w: \mathcal{P}_{\alpha_1, \alpha_2} \text{-periodic in } x', \tag{3.3} \]

\[u|_{t=0} = u_0 = \pi(\phi, w_0). \tag{3.4} \]

We define the operator \(L \) on \(L^2_{\text{per}}(\Omega_{\alpha_1, \alpha_2}) \) by

\[D(L) = \{ u = \pi(\phi, w) \in L^2_{\text{per}}(\Omega_{\alpha_1, \alpha_2}) : w \in H^1_{0, \text{per}}(\Omega_{\alpha_1, \alpha_2}), Lu = L^2_{\text{per}}(\Omega_{\alpha_1, \alpha_2}) \}, \]

\[L = \begin{pmatrix} v'_s \partial_{x_1} & \gamma^2 \text{div} \\ \nabla & -\nu \Delta - \nu \nabla \text{div} \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ -\frac{\nu}{\gamma^2} v'_s \partial_{x_1} + (\partial_{x_3} v'_s) e_1 \top e_3 \end{pmatrix}. \]

As in [1] one can see that \(-L \) generates a \(C_0 \)-semigroup in \(L^2_{\text{per}}(\Omega_{\alpha_1, \alpha_2}) \).

We now state our main result of this paper. For \(\alpha' = (\alpha_1, \alpha_2) \) with \(\alpha_1, \alpha_2 > 0 \) and \((m_1, m_2) \in \mathbb{Z}^2 \), we introduce the notations \(|\alpha'| \) and \(\alpha'_{m_1, m_2} \) by

\[|\alpha'| = (\alpha_1^2 + \alpha_2^2)^{\frac{1}{2}} \quad \text{and} \quad \alpha'_{m_1, m_2} = (\alpha_1 m_1, \alpha_2 m_2). \]

Theorem 3.1. There exist constants \(r_0 > 0 \) and \(\eta_0 > 0 \) such that if \(|\alpha'| \leq r_0 \), then

\[\sigma(-L) \cap \{ \lambda \in \mathbb{C} : |\lambda| \leq \eta_0 \} = \{ \lambda_{m_1, m_2} : |m_1| = 0, 1, \ldots, k_1, |m_2| = 0, 1, \ldots, k_2 \} \]

for some \(k_1, k_2 \in \mathbb{N} \), where \(\lambda_{m_1, m_2} \) are eigenvalues of \(-L \) that satisfies

\[\lambda_{m_1, m_2} = -\frac{i}{6} (\alpha_1 m_1) + \kappa_0 (\alpha_1 m_1)^2 - \frac{\gamma^2}{12 \nu} (\alpha_2 m_2)^2 + O(|\alpha'_{m_1, m_2}|^3) \]

as \(|\alpha'_{m_1, m_2}| \to 0 \). Here \(\kappa_0 \) is the number given by

\[\kappa_0 = \frac{1}{12 \nu} \left(\frac{1}{280} - \frac{\nu^2}{15 \gamma^2} - \frac{\nu \nu}{30 \gamma^2} \right). \]

As a consequence, if \(\gamma^2 < \frac{1}{280} \) and \(2\nu^2 + \nu \nu \leq 30 \gamma^2 \left(\frac{1}{280} - \gamma^2 \right) \), then \(\kappa_0 > 0 \) and plane Poiseuille flow \(u_s = \pi(\phi_s, v_s) \) is linearly unstable.

Remark 3.2. Let, for example, \(\gamma = 0.05, \nu = 1/173 \) and \(\nu' = -2\nu/3 \). Then \(\kappa_0 > 0 \) and thus plane Poiseuille flow is unstable. In this case, the Reynolds number \(R = 1/(16 \nu) \sim 10.81 \) and the Mach number \(M = 8/\gamma = 160 \).

We will prove Theorem 3.1 in the subsequent sections. In section 4 we consider the Fourier series expansion in \(x' = (x_1, x_2) \in \mathcal{P}_{\alpha_1, \alpha_2} \) and reduce the problem to the ones for the Fourier coefficients \(\hat{u}(\alpha'_{m_1, m_2}, x_3) \). In section 5 we investigate the spectrum for the case \(\alpha'_{m_1, m_2} = 0 \). In section 6 we complete the proof of Theorem 3.1 by applying the analytic perturbation theory for small \(\alpha'_{m_1, m_2} \) based on the analysis in section 5.
4 Fourier series expansion in $x' \in \mathcal{P}_{\alpha_1, \alpha_2}$

In this section we consider the Fourier series expansion in $x' \in (x_1, x_2) \in \mathcal{P}_{\alpha_1, \alpha_2}$ and reduce the problem to the ones for the Fourier coefficients $\hat{u}(\alpha_{m_1m_2})$.

To investigate the spectrum of $-L$, we consider the Fourier series expansion of (3.1)–(3.4) in $x' \in \mathcal{P}_{\alpha_1, \alpha_2}$:

$$\partial_t \phi + i \xi_1 v_s^1 \phi + i \gamma^2 \xi' \cdot \hat{w}' + \gamma^2 \partial_{x_3} \hat{w}^3 = 0,$$

$$\partial_t \hat{w}' + \nu(|\xi'|^2 - \partial_{x_3}^2) \hat{w}' - i \hat{\nu} \xi' \cdot \hat{w}' + \partial_{x_3} \hat{w}^3 + i \xi' \phi = 0,$$

$$\partial_t \hat{w}^3 + \nu(|\xi'|^2 - \partial_{x_3}^2) \hat{w}^3 - \hat{\nu} \partial_{x_3} (i \xi' \cdot \hat{w}' + \partial_{x_3} \hat{w}^3) + \partial_{x_3} \phi + i \xi_1 v_s^1 \hat{w}^3 = 0,$$

$$\hat{w}|_{x_n=0,1} = 0,$$

$$\hat{u}|_{t=0} = \hat{u}_0 = \hat{\nu} (\hat{\phi}, \hat{w}).$$

Here and in what follows we simply write $\alpha_{m_1m_2} = (\alpha_1 m_1, \alpha_2 m_2)$ and $(m_1, m_2) \in \mathbb{Z}^2$ as $\xi' = (\xi_1, \xi_2)$; $\hat{\phi} = \hat{\phi}(\xi', x_3, t)$ and $\hat{w} = \hat{w}(\xi', x_3, t)$ are the Fourier coefficients of $\phi = \phi(x', x_3, t)$ and $w = w(x', x_3, t)$ with respect to $x' = (x_1, x_2) \in \mathcal{P}_{\alpha_1, \alpha_2}$, respectively, with $w' = \hat{\nu}(w^1, w^2)$; and $e'_1 = \hat{\nu}(1, 0) \in \mathbb{R}^2$.

We thus arrive at the following problem

$$\partial_t u + \hat{L}_{\xi'} u = 0, \quad u|_{t=0} = u_0$$

with a parameter $\xi' = (\xi_1, \xi_2) \in \mathbb{R}^2$, where $\hat{L}_{\xi'}$ is the operator on $L^2(0, 1)$ of the form

$$\hat{L}_{\xi'} = \hat{A}_{\xi'} + \hat{B}_{\xi'} + \hat{C}_0$$

with domain

$$D(\hat{L}_{\xi'}) = \{u = \hat{\nu}(\phi, w) \in L^2(0, 1) : w \in H^1_0(0, 1), \hat{L}_{\xi'} u \in L^2(0, 1)\}.$$
and

\[
\hat{C}_0 = \begin{pmatrix}
0 & 0 & 0 \\
-\frac{\nu}{\gamma} e'_1 & 0 & (\partial_{x_3} v'_s) e'_1 \\
0 & 0 & 0
\end{pmatrix}.
\]

Note that \(D(\hat{L}_{\xi'}) = D(\hat{L}_0)\) for all \(\xi' \in \mathbb{R}^2\).

5 Spectrum of \(-\hat{L}_0\)

To prove Theorem 3.1, we first consider the spectrum of \(-\hat{L}_0\), i.e., \(-\hat{L}_0 \xi'\) with \(\xi' = 0\):

\[
\hat{L}_0 = \begin{pmatrix}
0 & 0 & \gamma^2 \partial_{x_3} \\
-\frac{\nu}{\gamma} e'_1 & -\nu \partial^2_{x_3} I_2 & (\partial_{x_3} v'_s) e'_1 \\
\partial_{x_3} & 0 & -(\nu + \tilde{\nu}) \partial^2_{x_3}
\end{pmatrix}.
\]

Let us introduce the adjoint operator \(\hat{L}_{\xi'}^*\) of \(\hat{L}_{\xi'}\) with respect to the inner product \(\langle \cdot, \cdot \rangle\):

\[
\hat{L}_{\xi'}^* = \hat{A}_{\xi'} - \hat{B}_{\xi'} + \hat{C}_0^*,
\]

where

\[
\hat{C}_0^* = \begin{pmatrix}
0 & -\nu^\top e'_1 & 0 \\
0 & 0 & 0 \\
0 & (\partial_{x_3} v'_s)^\top e'_1 & 0
\end{pmatrix}.
\]

We consider \(\hat{L}_{\xi'}^*\) as an operator on \(L^2(0, 1)\) with domain

\[
D(\hat{L}_{\xi'}^*) = \{ u = \top (\phi, w) \in L^2(0, 1) : w \in H^1_0(0, 1), \hat{L}_{\xi'}^* u \in L^2(0, 1) \}.
\]

Note that

\[
\hat{L}_0^* = \begin{pmatrix}
0 & -\nu^\top e'_1 & -\gamma^2 \partial_{x_3} \\
0 & -\nu \partial^2_{x_3} I_2 & 0 \\
-\partial_{x_3} & (\partial_{x_3} v'_s)^\top e'_1 & -(\nu + \tilde{\nu}) \partial^2_{x_3}
\end{pmatrix}.
\]

In this paper we only consider the spectrum near the origin since we focus on the instability of plane Poiseuille flow.

Lemma 5.1. The following assertions hold true.

(i) There is a positive number \(\eta_1 = \eta_1(\nu, \tilde{\nu}, \gamma)\) such that \(\{ \lambda \in \mathbb{C} : |\lambda| < \eta_1 \} \setminus \{0\} \subset \rho(-\hat{L}_0)\). Furthermore, the following estimate holds uniformly for \(\lambda \in \{ \lambda \in \mathbb{C} : |\lambda| \leq \eta_1/2 \} \setminus \{0\}\):

\[
| (\lambda + \hat{L}_0)^{-1} f |_{L^2} + | \partial_{x_3} \hat{Q}(\lambda + \hat{L}_0)^{-1} f |_{L^2} \leq \frac{C}{|\lambda|} |f|_{L^2}.
\]
The same assertion holds with L_0 replaced by \hat{L}_0^*.

(ii) $\lambda = 0$ is a simple eigenvalue of $-\hat{L}_0$, i.e., $R(\hat{L}_0)$ is closed and
\[L^2(0, 1) = \text{Ker} \hat{L}_0 \oplus R(\hat{L}_0) \quad \text{with} \quad \dim \text{Ker} \hat{L}_0 = 1. \]

The same assertion holds with \hat{L}_0 replaced by \hat{L}_0^*.

(iii) The eigenspaces for $\lambda = 0$ of \hat{L}_0 and \hat{L}_0^* are spanned by $u^{(0)}$ and $u^{(0)*}$ respectively, where
\[u^{(0)} = \top(\phi^{(0)}, w^{(0)}), \quad w^{(0)} = \top(w^{(0), 1}, 0, 0) \]
and
\[u^{(0)*} = \top(\phi^{(0)*}, w^{(0)*}), \quad w^{(0)*} = \top(0, 0, 0) \]
with
\[\phi^{(0)}(x_3) = 1, \quad w^{(0), 1}(x_3) = \frac{1}{2\gamma^2}(-x_3^2 + x_3), \quad \phi^{(0)*}(x_3) = \gamma^2. \]

(iv) The eigenprojections $\hat{H}^{(0)}$ and $\hat{H}^{(0)*}$ for $\lambda = 0$ of $-\hat{L}_0$ and $-\hat{L}_0^*$ are given by
\[\hat{H}^{(0)} u = \langle u, u^{(0)*} \rangle u^{(0)} = \langle \phi \rangle u^{(0)}, \]
and
\[\hat{H}^{(0)*} u = \langle u, u^{(0)*} \rangle u^{(0)*} \]
for $u = \top(\phi, w)$, respectively. In particular, it holds that
\[u = \top(\phi, w) \in R(I - \hat{H}^{(0)}) \quad \text{if and only if} \quad \langle \phi \rangle = \langle u, u^{(0)*} \rangle = 0. \]

To prove Lemma 5.1, we introduce some operators. We define 2×2 matrix operators \tilde{L}_0, \tilde{L}_0^* on $L^2(0, 1)^2 = L^2(0, 1) \times L^2(0, 1)$, and A, \tilde{C}_0, \tilde{C}_0^* on $L^2(0, 1)^2$ by
\[\tilde{L}_0 = \begin{pmatrix} 0 & \gamma^2 \partial x_3 \\ \partial x_3 & -(\nu + \tilde{\nu})\partial^2 x_3 \end{pmatrix}, \]
\[\tilde{L}_0^* = \begin{pmatrix} 0 & -\gamma^2 \partial x_3 \\ -\partial x_3 & -(\nu + \tilde{\nu})\partial^2 x_3 \end{pmatrix} \]
with domain
\[D(\tilde{L}_0) = \{ \tilde{u} = \top(\phi, w^3) \in L^2(0, 1)^2 : w \in H^1_0(0, 1), \tilde{L}_0 u \in L^2(0, 1)^2 \}, \]
\[D(\tilde{L}_0^*) = \{ u = \top(\phi, w^3) \in L^2(0, 1)^2 : w \in H^1_0(0, 1), \tilde{L}_0^* u \in L^2(0, 1)^2 \}, \]
and
\[A = \begin{pmatrix} -\nu \partial^2 x_3 & 0 \\ 0 & -\nu \partial^2 x_3 \end{pmatrix} \]
with domain $D(A) = [H^2(0,1) \cap H_0^1(0,1)]_2^2$, and

$$C_0 = \begin{pmatrix} -\nu^2 & (\partial_{x_3} v^1_s) \\ 0 & 0 \end{pmatrix},$$

$$C_0^* = \begin{pmatrix} -\nu & 0 \\ (\partial_{x_3} v^1_s) & 0 \end{pmatrix}$$

with domain $D(C_0) = D(C_0^*) = L^2(0,1)^2$.

Lemma 5.2. (i) It holds that

$$\sigma(-\tilde{L}_0) \cap \{ \lambda \in \mathbb{C} : |\lambda| < \tilde{\eta}_0 \} = \{0\}, \quad \{ \lambda \in \mathbb{C} : |\lambda| < \nu \pi \} \subset \rho(-A),$$

for some constant $\tilde{\eta}_0 = \tilde{\eta}_0(\nu, \tilde{\nu}, \gamma^2) > 0$. Furthermore,

$$L^2(0,1)^2 = \text{Ker} \tilde{L}_0 \oplus R(\tilde{L}_0)$$

with

$$\text{Ker} \tilde{L}_0 = \text{span} \{ \tilde{u}^{(0)} \}, \quad \tilde{u}^{(0)} = \top (1, 0),$$

$$R(\tilde{L}_0) = L^2_x(0,1) \times L^2(0,1).$$

In particular, 0 is a simple eigenvalue of $-\tilde{L}_0$ with eigenprojection \tilde{H}_0 given by $\tilde{H}_0 \tilde{u} = (\phi)\tilde{u}^{(0)}$ ($\tilde{u} = \top (\phi, w^3)$).

(ii) There hold the estimates

$$| (\lambda + \tilde{L}_0)^{-1} \tilde{g} |_{L^2} + | \partial_{x_3} \tilde{Q}_2 (\lambda + \tilde{L}_0)^{-1} \tilde{g} |_{L^2} \leq C \left(\frac{1}{|\lambda|} + \frac{1}{\tilde{\eta}_0 - |\lambda|} \right) |\tilde{g}|_{L^2}$$

uniformly for $\lambda \in \{ \lambda \in \mathbb{C} : |\lambda| < \tilde{\eta}_0 \} \setminus \{0\}$ and $\tilde{g} = \top (f^0, f^3) \in L^2(0,1)^2$, and

$$| \partial_{x_3} (\lambda + A)^{-1} f' |_{L^2} \leq \frac{1}{\nu \pi^2 - |\lambda|} |f'|_{L^2}, \quad l = 0, 1.$$

uniformly for $\lambda \in \{ \lambda \in \mathbb{C} : |\lambda| < \nu \pi^2 \}$ and $f' \in L^2(0,1)^2$. Here $\tilde{Q}_2 = \text{diag} (0,1)$.

(iii) The assertions in (i) and (ii) also hold with \tilde{L}_0 replaced by \tilde{L}_0^*.

Proof. The assertions for A is well-known, and so we here omit the proof for A.

As for \tilde{L}_0, let us consider the problem to find \tilde{u} satisfying

$$\tilde{L}_0 \tilde{u} = \tilde{g}, \quad \tilde{u} = \top (\phi, w^3) \in D(\tilde{L}_0) \quad (5.1)$$

for a given $\tilde{g} = \top (f^0, f^3) \in L^2(0,1)^2$.

To solve this problem, we expand ϕ and w^3 into the Fourier cosine and sine series respectively:

$$\phi = \sum_{n=0}^{\infty} \phi_n \cos n \pi x_3, \quad w^3 = \sum_{n=1}^{\infty} w^3_n \sin n \pi x_3,$$
and likewise,
\[f^0 = \sum_{n=0}^{\infty} f_n^0 \cos n\pi x_3, \quad f^3 = \sum_{n=1}^{\infty} f_n^3 \sin n\pi x_3. \]

It then follows from (5.1) that
\[f_0^0 = 0, \]
and, for \(n \geq 1, \)
\[\nu^3_n = \frac{1}{\gamma^2} \frac{1}{n\pi} f_0^n, \]
\[\phi_n = \frac{\nu + \hat{\nu}}{\gamma^2} f_0^n - \frac{1}{n\pi} f^3_n. \]

We thus see that problem (5.1) is uniquely solvable if and only if \(\langle \phi \rangle = \phi^0 = 0 \); and in this case, the unique solution is given by
\[\phi = \frac{\nu + \hat{\nu}}{\gamma^2} f_0^n + F^3, \quad w^3 = \frac{1}{\gamma^2} \int_0^{x_3} f^0(y) dy, \tag{5.2} \]
where \(F^3 = -\sum_{n=1}^{\infty} \frac{1}{n\pi} f^3_n \cos n\pi x_3. \) Furthermore, it holds that
\[|\hat{u}|_{L^2} \leq \hat{\eta}_0^{-1} |g|_{L^2}, \quad |\partial_{x_3} w^3|_{L^2} \leq \frac{1}{\gamma^2} |f^0|_{L^2}, \tag{5.3} \]
where \(\hat{\eta}_0 = \left[\max\left\{ \frac{\nu + \hat{\nu}}{\gamma^2}, \frac{1}{\gamma^2}, \frac{1}{\pi} \right\} \right]^{-1}. \) Therefore, we see that \(R(\hat{L}_0) = L^2_x(0,1) \times L^2(0,1). \) Moreover, we find that \(\text{Ker} \hat{L}_0 = \text{span} \{ \tilde{u}^{(0)} \} \) with \(\tilde{u}^{(0)} = \frac{\nu}{\gamma^2} + (1,0) \) and \(L^2(0,1)^2 = \text{Ker} \hat{L}_0 \oplus R(\hat{L}_0). \) It then follows that 0 is a simple eigenvalue of \(-\hat{L}_0 \) and the eigenspace for 0 is spanned by \(\tilde{u}^{(0)} \). The eigenprojection \(\hat{P}_0 \) for 0 is given by \(\hat{P}_0 \tilde{u} = \langle \phi \rangle \tilde{u}^{(0)} \) for \(\tilde{u} = \frac{\nu}{\gamma^2}, w^3 \in L^2(0,1). \)

We decompose \(L^2(0,1)^2 = L^2(0,1)^2 = X_0 \oplus X_1, \) where \(X_0 = \hat{P}_0 L^2(0,1)^2 = \text{Ker} \hat{L}_0 \) and \(X_1 = \hat{P}_1 L^2(0,1)^2 = R(\hat{L}_0) \) with \(\hat{P}_1 = I - \hat{P}_0. \)

Let us consider the resolvent problem
\[\lambda \hat{u} + \hat{L}_0 \hat{u} = g, \quad \hat{u} \in D(\hat{L}_0). \tag{5.4} \]
This is equivalent to
\[\lambda \hat{u} = g, \quad \hat{u} \in X_0 \tag{5.5} \]
for \(g \in X_0 \) and
\[\lambda \hat{u} + \hat{L}_0 \hat{u} = g, \quad \hat{u} \in X_1 \cap D(\hat{L}_0) \tag{5.6} \]
for \(g \in X_1. \)

We see from (5.3) that if \(|\lambda| < \hat{\eta}_0, \) then \(\lambda \in \rho(-\hat{L}_0|_{X_1}) \) and
\[|((\lambda + \hat{L}_0)|_{X_1})^{-1} g|_{L^2} \leq \frac{1}{\hat{\eta}_0 - |\lambda|} |g|_{L^2}, \]
\[|\partial_{x_3} \hat{Q}_2((\lambda + \hat{L}_0)|_{X_1})^{-1} g|_{L^2} \leq \frac{1}{\gamma^2} \frac{\hat{\eta}_0}{\hat{\eta}_0 - |\lambda|} |g|_{L^2} \]
for $|\lambda| < \tilde{\eta}_0$ and $g \in X_1$. On the other hand, it follows from (5.5) that if $\lambda \neq 0$, then
\[\tilde{\Pi}_0 \tilde{u} = \frac{1}{\lambda} \tilde{\Pi}_0 g. \]

As a result, we see that
\[(\lambda + \tilde{L}_0)^{-1} g = \frac{1}{\lambda} \tilde{\Pi}_0 g + ((\lambda + \tilde{L}_0)|_{X_1})^{-1} \tilde{\Pi}_1 g \]
for $\lambda \neq 0$ with $|\lambda| < \tilde{\eta}_0$ and $g \in L^2(0,1)^2$. The desired estimate for \tilde{L}_0 now follows. The assertion for \tilde{L}_0^* can be shown in a similar manner. This completes the proof. □

We now give a proof of Lemma 5.1.

Proof of Lemma 5.1. For $u = \top(\phi, w)$, $w = \top(w^1, w^2, w^3)$, we write
\[\tilde{u} = \top(\phi, w^3), \quad w' = \top(w^1, w^2). \]
Then the resolvent problem
\[(\lambda + \tilde{L}_0)u = f \] (5.7)
is written as
\begin{align*}
(\lambda + \tilde{L}_0)\tilde{u} &= g, \quad (5.8) \\
(\lambda + A)w' &= f' - C_0 \tilde{u}. \quad (5.9)
\end{align*}
Here $f = \top(f^0, f^1, f^2, f^3)$, $g = \top(f^0, f^3)$ and $f' = \top(f^1, f^2)$.

Set $\eta_1 = \min\{\tilde{\eta}_0, \nu \pi^2\}$. Since $|C_0 \tilde{u}|_{L^2} \leq C |\tilde{u}|_{L^2}$, we see from Lemma 5.2 that
\[\{\lambda \in \mathbb{C} : |\lambda| < \eta_1\}\{0\} \subset \rho(-\tilde{L}_0). \]
Furthermore, if $\lambda \in \{\lambda \in \mathbb{C} : |\lambda| < \eta_1\}\{0\}$, then the \tilde{u}- and w'-components of $u = (\lambda + \tilde{L}_0)^{-1} f$ are given by $\tilde{u} = \top(\phi, w^3) = (\lambda + \tilde{L}_0)^{-1} g$ and $w' = \top(w^1, w^2) = (\lambda + A)^{-1} [f' - C_0 \tilde{u}]$, respectively, and it holds that
\[|\tilde{u}|_{L^2} + |\partial_{x_3} w^3|_{L^2} \leq C \left(\frac{1}{|\lambda|} + \frac{1}{\tilde{\eta}_0 - |\lambda|} \right) |g|_{L^2} \]
and
\[|\partial_{x_3}^l w'|_{L^2} \leq C \left(\frac{\nu \pi^2}{|\lambda|} \right)^l \left(|f'|_{L^2} + \left(\frac{1}{|\lambda|} + \frac{1}{\tilde{\eta}_0 - |\lambda|} \right) |g|_{L^2} \right), \quad l = 0, 1. \]
We thus find that if $|\lambda| \leq \frac{\eta_1}{2}$, then
\[\left| (\lambda + \tilde{L}_0)^{-1} f \right|_{L^2} + \left| \partial_{x_3} Q(\lambda + \tilde{L}_0)^{-1} f \right|_{L^2} \leq C \left(\frac{\nu \pi^2}{|\lambda|} \right)^2 |f|_{L^2}. \]
This proves (i) for \tilde{L}_0.

We next prove assertions (ii)–(iv) for \tilde{L}_0. We first prove Ker $\tilde{L}_0 = \text{span} \{u^0\}$. Let $\tilde{L}_0 u = 0$. Then $\tilde{L}_0 \tilde{u} = 0$ and $A w' = -C_0 \tilde{u}$. It follows from Lemma 5.2 that $u = \alpha u^0$ (α: constant) and, hence, Ker $\tilde{L}_0 = \text{span} \{u^0\}$.

13
Let us show that $R(\hat{L}_0)$ is closed and $L^2(0,1) = \text{Ker} \hat{L}_0 \oplus R(\hat{L}_0)$. Set $\Pi^{(0)} u = \langle u, u^{(0)*} \rangle u^{(0)} = \langle \phi \rangle u^{(0)}$ for $u = \hat{T}(\phi, w) \in L^2(0,1)$. It then follows that $\Pi^{(0)}$ is a projection onto $\text{Ker} \hat{L}_0$ with property $\Pi^{(0)} \hat{L}_0 \subset \hat{L}_0 \Pi^{(0)}$. Furthermore, it holds that $f = \hat{T}(f^0, f', f^3) \in R(I - \Pi^{(0)})$ if and only if $\langle f, u^{(0)*} \rangle = \langle f^0 \rangle = 0$.

Let $\langle f, u^{(0)*} \rangle = \langle f^0 \rangle = 0$. Then (5.7) with $\lambda = 0$ is written in the form of (5.8)–(5.9) with $\lambda = 0$ and $g = \hat{T}(f^0, f^3) \in L^2(0,1) \times L^2(0,1)$. It then follows from Lemma 5.2 that (5.8) with $\lambda = 0$ has a unique solution $\tilde{u} \in D(\hat{L}_0)$ and, hence, (5.9) with $\lambda = 0$ has a unique solution $w' \in D(A)$. As a result, (5.7) with $\lambda = 0$ has a unique solution $u = \hat{T}(\phi, w', w^3)$ that is given by

$$
\tilde{u} = \hat{T}(\phi, w^3) = (\hat{L}_0|_{\hat{X}_i})^{-1} g, \quad g = \hat{T}(f^0, f^3),
$$

$$
w' = A^{-1}[f' - \hat{C}_0 \tilde{u}].
$$

We thus find that $R(I - \Pi^{(0)}) \subset R(\hat{L}_0)$. On the other hand, if $f = \hat{T}(f^0, f', f^3) \in R(\hat{L}_0)$, then it is easy to see that $\langle f, u^{(0)*} \rangle = \langle f^0 \rangle = 0$, and, hence, $f \in R(I - \Pi^{(0)})$. We thus find that $R(I - \Pi^{(0)}) = R(\hat{L}_0)$. Consequently, we see that $R(\hat{L}_0)$ is closed and $L^2(0,1) = \text{Ker} \hat{L}_0 \oplus R(\hat{L}_0)$. This proves (ii)–(iv) for \hat{L}_0.

The assertions for \hat{L}_0^* can be obtained similarly and we omit the details. This completes the proof. \(\square\)

6 Perturbation argument

In this section we investigate $\sigma(-\hat{L}_{\xi'}) \cap \{|\lambda| \leq \eta_1/2\}$ for $|\xi'| \ll 1$.

Let $\hat{L}_{\xi'}$ be denoted by

$$
\hat{L}_\xi = \hat{L}_0 + \sum_{j=1}^{2} \xi_j \hat{L}^{(1)}_j + \sum_{j,k=1}^{2} \xi_j \xi_k \hat{L}^{(2)}_{jk},
$$

where

$$
\hat{L}_0 = \begin{pmatrix}
0 & 0 & \gamma^2 \partial_{x_3} \\
-\frac{\nu}{\gamma} e_1' & -\nu \partial_{x_3} I_2 & (\partial_{x_3} v') e_1' \\
\partial_{x_3} & 0 & -(\nu + \tilde{\nu}) \partial_{x_3}^2
\end{pmatrix},
$$

$$
\hat{L}^{(1)}_j = \begin{pmatrix}
i \delta_{1j} v_{s}^1 e_j' & i \gamma^2 e_j' & 0 \\
\nu e_j' & i \gamma e_j' & 0 \\
0 & -i \tilde{\nu} e_j' \partial_{x_3} & i v_{s}^1 \delta_{1j}
\end{pmatrix}, \quad j = 1,2,
$$

$$
\hat{L}^{(2)}_{jk} = \begin{pmatrix}
0 & \nu \delta_{jk} I_2 + \tilde{\nu} e_{j}' e_{k}' & 0 \\
0 & 0 & \nu \delta_{jk}
\end{pmatrix}, \quad j, k = 1,2.
$$
Here $\mathbf{e}_1^\prime = \top(1, 0)$ and $\mathbf{e}_2^\prime = \top(0, 1)$.

We will apply the analytic perturbation theory to prove Theorem 3.1. To do so, we prepare the following estimates.

Lemma 6.1. There hold the following estimates uniformly for λ with $|\lambda| = \frac{\eta_0}{2}$ and $f \in L^2(0, 1)$:

$$
\left| \hat{L}_j^{(1)}(\lambda + \hat{L}_0)^{-1} f \right|_{L^2} \leq C |f|_{L^2}, \quad j = 1, 2,
$$

$$
\left| \hat{L}_{jk}^{(2)}(\lambda + \hat{L}_0)^{-1} f \right|_{L^2} \leq C |f|_{L^2}, \quad j, k = 1, 2.
$$

Proof. Let λ satisfy $|\lambda| = \frac{\eta_0}{2}$. It then follows from Lemma 5.1 that

$$
\left| \hat{L}_j^{(1)}(\lambda + \hat{L}_0)^{-1} f \right|_{L^2} \leq C \left| (\lambda + \hat{L}_0)^{-1} f \right|_{L^2 \times H^1} \leq C |f|_{L^2}
$$

and

$$
\left| \hat{L}_{jk}^{(2)}(\lambda + \hat{L}_0)^{-1} f \right|_{L^2} \leq C \left| (\lambda + \hat{L}_0)^{-1} f \right|_{L^2} \leq C |f|_{L^2}.
$$

This completes the proof. \(\square\)

Theorem 3.1 follows from the following result on the spectrum of $-\hat{L}_{\xi'}^\prime$.

Theorem 6.2. There exists a positive number $r_1 = r_1(\nu, \tilde{\nu}, \gamma)$ such that if $|\xi'| \leq r_1$, then it holds

$$
\sigma(-\hat{L}_{\xi'}^\prime) \cap \{ \lambda \in \mathbb{C} : |\lambda| \leq \frac{\eta_0}{2} \} = \{ \lambda_{\xi'}^\prime \},
$$

where $\lambda_{\xi'}^\prime$ is a simple eigenvalue of $-\hat{L}_{\xi'}^\prime$ and it satisfies

$$
\lambda_{\xi'}^\prime = -\frac{i}{6} \xi_1 + \kappa_0 \xi_2^2 - \frac{\gamma^2}{12\nu} \xi_2^2 + O(|\xi'|^3)
$$

as $\xi' \to 0$. Here

$$
\kappa_0 = \frac{1}{12\nu} \left(\frac{1}{280} - \gamma^2 - \frac{\nu^2}{15\gamma^2} - \frac{\nu \tilde{\nu}}{30\gamma^2} \right).
$$

Therefore, if $\gamma^2 < \frac{1}{280}$ and $2\nu^2 + \nu \tilde{\nu} \leq 30\gamma^2 \left(\frac{1}{280} - \gamma^2 \right)$, then $\kappa_0 > 0$.

Proof of Theorem 6.2. Based on Lemma 5.1 and Lemma 6.1 we can apply the analytic perturbation theory (see, e.g., [4, Chap VII], [5, Chap. XII]) to see that if $|\xi'| \ll 1$, then

$$
\sigma(-\hat{L}_{\xi'}^\prime) \cap \{ \lambda \in \mathbb{C} : |\lambda| \leq \frac{\eta_0}{2} \} = \{ \lambda_{\xi'}^\prime \},
$$

where $\lambda_{\xi'}^\prime$ is a simple eigenvalue. Furthermore, $\lambda_{\xi'}^\prime$ is given by

$$
\lambda_{\xi'}^\prime = \lambda_0 + \sum_{j=1}^{2} \xi_j \lambda_j^{(1)} + \sum_{j,k=1}^{2} \xi_j \xi_k \lambda_{jk}^{(2)} + O(|\xi'|^3).
$$
Here $\lambda_{jk}^{(2)} = \lambda_{kj}^{(2)}$,
\[\lambda_0 = 0, \]
\[\lambda_j^{(1)} = -\langle \hat{L}_j^{(1)}u^{(0)}, u^{(0)*} \rangle, \]
\[\lambda_{jk}^{(2)} = -\left\langle \frac{1}{2}(\hat{L}_{jk}^{(2)} + \hat{L}_{kj}^{(2)})u^{(0)}, u^{(0)*} \right\rangle + \left\langle \frac{1}{2}(\hat{L}_j^{(1)} \hat{S} \hat{L}_j^{(1)} + \hat{L}_k^{(1)} \hat{S} \hat{L}_j^{(1)})u^{(0)}, u^{(0)*} \right\rangle, \]
where $\hat{S} = [(I - \Pi^{(0)})\hat{L}_0(I - \Pi^{(0)})]^{-1}$.

The proof of Theorem 6.2 will be completed if we compute $\lambda_j^{(1)}$ and $\lambda_{jk}^{(2)}$. We will compute them in the following propositions.

Proposition 6.3. $\lambda_j^{(1)} = -\frac{i}{6}\delta_{1j}$, $j = 1, 2$.

Proof. We have
\[
\hat{L}_1^{(1)}u^{(0)} = i \begin{pmatrix} v_1^1 + \gamma^2 w^{(0),1} \\ (1 + v_1^1 w^{(0),1}) e_1' \\ -\bar{v} \partial_{x_3} w^{(0),1} \end{pmatrix} = i \begin{pmatrix} -x_3^2 + x_3 \\ 1 + \frac{1}{x_3^2} (-x_3^2 + x_3)^2 \\ 0 \end{pmatrix}, \quad (6.1)
\]
\[
\hat{L}_2^{(1)}u^{(0)} = i \begin{pmatrix} 0 \\ e_2' \\ 0 \end{pmatrix} = i \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad (6.2)
\]
It then follows that
\[
\lambda_1^{(1)} = -\langle \hat{L}_1^{(1)}u^{(0)}, u^{(0)*} \rangle = -i\langle v_1^1 + \gamma^2 w^{(0),1} \rangle = -i \int_0^1 (-y^2 + y) \, dy = -\frac{i}{6}
\]
and $\lambda_2^{(1)} = 0$. This completes the proof. \(\square\)

Proposition 6.4. $\lambda_{22}^{(2)} = -\frac{\gamma^2}{12\bar{v}}$.

Proof. Since $\hat{L}_{jk}^{(2)}u^{(0)} = \top (0, *, *, *)$, we have
\[
\langle \hat{L}_{jk}^{(2)}u^{(0)}, u^{(0)*} \rangle = 0 \quad \text{for} \quad j, k = 1, 2. \quad (6.3)
\]
Let us compute $\hat{L}_j^{(1)} \hat{S} \hat{L}_2^{(1)} u^{(0)}$. We see from (6.2) that $\langle \hat{L}_2^{(1)}u^{(0)}, u^{(0)*} \rangle = 0$. Therefore, $\hat{L}_2^{(1)}u^{(0)} \in R(I - \hat{H}^{(0)})$, and so, $\hat{S} \hat{L}_2^{(1)}u^{(0)}$ is a unique solution $u = \top (\phi, w)$ of
\[
\hat{L}_0u = \hat{L}_2^{(1)}u^{(0)}, \quad \langle \phi \rangle = 0.
\]
By (6.2), we see that the solution \(u\) of this problem is given by \(\phi = w^1 = w^3 = 0\) and \(w^2\) that satisfies \(-\nu \partial^2_{x_3} w^2 = i\) and \(w^2|_{x_3=0,1} = 0\). We thus obtain

\[
\hat{S}\hat{L}^{(1)}_2 u^{(0)} = \top(0,0, \frac{i}{2\nu}(-x^3_3 + x_3),0).
\]

This implies that

\[
\hat{L}^{(1)}_1 \hat{S}\hat{L}^{(1)}_2 u^{(0)} = 0
\]

and

\[
\hat{L}^{(1)}_2 \hat{S}\hat{L}^{(1)}_2 u^{(0)} = \top(-\frac{\gamma^2}{2\nu}(-x^3_3 + x_3), *, *, *).
\]

It then follows from (6.3) and (6.5) that

\[
\lambda^{(2)}_{22} = -\frac{\gamma^2}{2\nu}(-x^2_3 + x_3) = -\frac{\gamma^2}{12\nu}.
\]

This completes the proof. \(\square\)

To obtain \(\lambda^{(2)}_{11} (= \lambda^{(2)}_{1j})\), we compute \(\hat{S}\hat{L}^{(1)}_1 u^{(0)}\).

Proposition 6.5. \(\hat{S}\hat{L}^{(1)}_1 u^{(0)}\) is given by

\[
\hat{S}\hat{L}^{(1)}_1 u^{(0)} = u^{(1)},
\]

where \(u^{(1)} = \top(\phi^{(1)}, w^{(1),1}, w^{(1),2}, w^{(1),3})\) with

\[
\phi^{(1)}(x_3) = i \left(\frac{\nu}{\gamma^2} + \frac{\nu}{2\gamma^2} \right) (-x^2_3 + x_3 - \frac{1}{6}),
\]

\[
w^{(1),1}(x_3) = i \left(\frac{\nu}{\gamma^2} + \frac{\nu}{2\gamma^2} \right) \left(\frac{1}{12} x^4_3 - \frac{1}{6} x^3_3 + \frac{1}{12} x^2_3 \right) + \frac{i}{2\nu} \left(\frac{1}{30} x^6_3 - \frac{1}{10} x^5_3 + \frac{1}{12} x^4_3 - \frac{1}{60} x^3_3 \right) + \frac{i}{2\nu} (-x^2_3 + x_3),
\]

\[
w^{(1),2}(x_3) = 0,
\]

\[
w^{(1),3}(x_3) = \frac{i}{\gamma^2} \left(-\frac{1}{3} x^3_3 + \frac{1}{2} x^2_3 - \frac{1}{6} x^3_3 \right).
\]

Proof. We set \(f = \top(f^0, f^1, f^2, f^3) = (I - \hat{H}^{(0)})\hat{L}^{(1)}_1 u^{(0)}\). Then \(\hat{S}\hat{L}^{(1)}_1 u^{(0)}\) is a unique solution \(u\) of

\[
\hat{L}_0 u = f, \quad \langle \phi \rangle = 0,
\]

namely, \(u = \top(\phi, w^1, w^2, w^3)\) is a solution of

\[
\gamma^2 \partial_{x_3} w^3 = f^0, \tag{6.6}
\]

\[
-\frac{\nu}{\gamma^2} \phi - \nu \partial^2_{x_3} w^1 + (\partial_{x_3} v^1_3)w^3 = f^1, \tag{6.7}
\]

\[
-\nu \partial^2_{x_3} w^2 = f^2, \tag{6.8}
\]

17
\[\partial_{x_3} \phi - (\nu + \tilde{\nu}) \partial^2_{x_3} w^3 = f^3, \quad (6.9) \]
\[w|_{x_3=0,1} = 0, \quad (6.10) \]
\[\langle \phi \rangle = 0. \quad (6.11) \]

To solve (6.6)–(6.11), let us first compute \(f \). Since
\[\hat{L}^{(0)} L^{(1)} u^{(0)} = \langle \hat{L}^{(1)} u^{(0)}, u^{(0)} \rangle u^{(0)} = -\lambda^{(1)} u^{(0)} = \frac{i}{6} u^{(0)}, \]
we have
\[f = \hat{L}^{(1)} u^{(0)} - \frac{i}{6} u^{(0)} \]
\[= i \begin{pmatrix} v_s^1 + \gamma^2 w^{(0),1} - \frac{1}{6} \phi^{(0)} \\ 1 + v_s^1 w^{(0),1} - \frac{1}{6} u^{(0),1} \\ 0 \\ -\tilde{\nu} \partial_{x_3} w^{(0),1} \\ -x_3^2 + x_3 - \frac{1}{6} \\ \end{pmatrix} \]
\[= i \begin{pmatrix} \frac{1}{12\gamma^2} (3x_3^4 - 6x_3^3 + 4x_3^2 - x_3) + 1 \\ 0 \\ \frac{\tilde{\nu}}{2\gamma^2} (2x_3 - 1) \end{pmatrix}. \quad (6.12) \]

Computation of \(w^2 \): It follows from (6.8), (6.10) and (6.12) that \(w^2 = 0 \).

Computation of \(w^3 \): Integrating (6.6), we have
\[w^3(x_3) = \int_0^{x_3} f^0(y) dy = i \frac{1}{\gamma^2} \left(-\frac{1}{3} x_3^3 + \frac{1}{2} x_3^2 - \frac{1}{6} x_3 \right). \quad (6.13) \]
Note that this \(w^3 \) also satisfies (6.10) since \(\langle f^0 \rangle = 0 \).

Computation of \(\phi \): We see from (6.9)–(6.11), (6.12) and (6.13) that
\[\phi(x_3) = i \left(\frac{\nu}{\gamma^2} + \frac{\tilde{\nu}}{2\gamma^2} \right) \left(-x_3^2 + x_3 - \frac{1}{6} \right). \quad (6.14) \]

Computation of \(w^1 \): From (6.7), we have
\[\partial^2_{x_3} w^1 = -\frac{1}{\gamma^2} \phi + \frac{1}{\nu} (\partial_{x_3} v_s^1) w^3 - \frac{1}{\nu} f^1, \]
which, together with (6.12)–(6.14), gives
\[w^1(x_3) = c_0 + c_1 x_3 - i \left(\frac{\nu}{\gamma^2} + \frac{\tilde{\nu}}{2\gamma^2} \right) \left(-\frac{1}{12} x_3^4 + \frac{1}{6} x_3^3 - \frac{1}{12} x_3^2 \right) \\
+ \frac{i}{12\gamma^2} \left(\frac{1}{30} x_3^6 - \frac{1}{10} x_3^5 + \frac{1}{12} x_3^4 \right) - \frac{i}{2\nu} x_3^2. \]
Here c_0 and c_1 are some constants. Since $w^1(0) = w^1(1) = 0$, we see that $c_0 = 0$ and $c_1 = -\frac{1}{12\nu} \cdot \frac{1}{60} + \frac{i}{2\nu}$. We thus find that

$$w^1(x_3) = -i \left(\frac{\nu}{\gamma} + \frac{\bar{\nu}}{2\gamma^2} \right) \left(-\frac{1}{12} x_3^4 + \frac{i}{12} x_3^2 - \frac{1}{12} x_3^2 \right)$$

$$+ \frac{i}{12\nu} \left(\frac{1}{20} x_3^6 - \frac{1}{10} x_3^5 + \frac{1}{12} x_3^4 - \frac{1}{60} x_3 \right) + \frac{i}{2\nu} (-x_3^2 + x_3). \quad (6.15)$$

This completes the proof. □

Proposition 6.6. $\lambda_{j1}^{(2)} = \lambda_{j2}^{(2)} = \kappa_0 \delta_{j1}$, $j = 1, 2$. Here κ_0 is given by

$$\kappa_0 = \frac{1}{12\nu} \left(\frac{1}{280} - \frac{\nu_1^2}{15\gamma^2} - \frac{\nu}{30\gamma^2} \right).$$

Proof. Since $w_1^{(1,2)} = 0$ by Proposition 6.5, we have $\hat{L}_2^{(1)} \hat{S}_1^{(1)} u^{(0)} = \tau(0, *, *, *)$. It then follows that $\langle \hat{L}_2^{(1)} \hat{S}_1^{(1)} u^{(0)}, u^{(0)*} \rangle = 0$. This, together with (6.3) and (6.4), implies $\lambda_{21}^{(2)} = \lambda_{12}^{(2)} = 0$.

We next compute $\lambda_{11}^{(2)}$. Since

$$v_1^{(1)} \phi_1^{(1)} + \gamma^2 w_1^{(1,1)} = \frac{i}{12} \left(\frac{\nu}{\gamma} + \frac{\bar{\nu}}{2\gamma^2} \right) \left(7x_3^4 - 14x_3^2 + 8x_3^2 - x_3 \right)$$

$$+ \frac{i}{12\nu} \left(\frac{1}{20} x_3^6 - \frac{1}{10} x_3^5 + \frac{1}{12} x_3^4 - \frac{1}{60} x_3 \right) + \frac{i\nu}{2\nu} (-x_3^2 + x_3),$$

we have

$$\lambda_{11}^{(2)} = \langle \hat{L}_1^{(1)} \hat{S}_1^{(1)} u^{(0)}, u^{(0)*} \rangle$$

$$= i \langle v_1^{(1)} \phi_1^{(1)} + \gamma^2 w_1^{(1,1)} \rangle$$

$$= -\frac{1}{12} \left(\frac{\nu}{\gamma^2} + \frac{\bar{\nu}}{2\gamma^2} \right) \cdot \frac{1}{15} + \frac{1}{12\nu} \cdot \frac{1}{280} - \frac{\nu_1^2}{20} \cdot \frac{1}{6} = \kappa_0.$$

This completes the proof. □

The proof of Theorem 6.2 is now completed in view of Propositions 6.3, 6.4 and 6.6. □

Acknowledgements. Y. Kagei was partly supported by JSPS KAKENHI Grant Number 24340028, 22244009, 24224003.

References

List of MI Preprint Series, Kyushu University
The Global COE Program
Math-for-Industry Education & Research Hub

MI

MI2008-1 Takahiro ITO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Abstract collision systems simulated by cellular automata

MI2008-2 Eiji ONODERA
The initial value problem for a third-order dispersive flow into compact almost Hermitian manifolds

MI2008-3 Hiroaki KIDO
On isosceles sets in the 4-dimensional Euclidean space

MI2008-4 Hirofumi NOTSU
Numerical computations of cavity flow problems by a pressure stabilized characteristic-curve finite element scheme

MI2008-5 Yoshiyasu OZEKI
Torsion points of abelian varieties with values in finite extensions over a p-adic field

MI2008-6 Yoshiyuki TOMIYAMA
Lifting Galois representations over arbitrary number fields

MI2008-7 Takehiro HIROTSU & Setsuo TANIGUCHI
The random walk model revisited

MI2008-8 Silvia GANDY, Masaaki KANNO, Hirokazu ANAI & Kazuhiro YOKOYAMA
Optimizing a particular real root of a polynomial by a special cylindrical algebraic decomposition

MI2008-9 Kazufumi KIMOTO, Sho MATSUMOTO & Masato WAKAYAMA
Alpha-determinant cyclic modules and Jacobi polynomials

MI2008-10 Sangyeol LEE & Hiroki MASUDA
Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Observed Univariate SDE

MI2008-11 Hiroyuki CHIHARA & Eiji ONODERA
A third order dispersive flow for closed curves into almost Hermitian manifolds

MI2008-12 Takehiko KINOSHITA, Kouji HASHIMOTO and Mitsuo T. NAKAO
On the L^2 a priori error estimates to the finite element solution of elliptic problems with singular adjoint operator

MI2008-13 Jacques FARAUT and Masato WAKAYAMA
Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek polynomials
MI2008-14 Takashi NAKAMURA
Riemann zeta-values, Euler polynomials and the best constant of Sobolev inequality

MI2008-15 Takashi NAKAMURA
Some topics related to Hurwitz-Lerch zeta functions

MI2009-1 Yasuhide FUKUMOTO
Global time evolution of viscous vortex rings

MI2009-2 Hidetoshi MATSUI & Sadanori KONISHI
Regularized functional regression modeling for functional response and predictors

MI2009-3 Hidetoshi MATSUI & Sadanori KONISHI
Variable selection for functional regression model via the L_1 regularization

MI2009-4 Shuichi KAWANO & Sadanori KONISHI
Nonlinear logistic discrimination via regularized Gaussian basis expansions

MI2009-5 ToshiroHIRANOUCHI & Yuichiro TAGUCHII
Flat modules and Groebner bases over truncated discrete valuation rings

MI2009-6 Kenji KAIJWARA & Yasuhiro OHTA
Bilinearization and Casorati determinant solutions to non-autonomous 1+1 dimensional discrete soliton equations

MI2009-7 Yoshiyuki KAGEI
Asymptotic behavior of solutions of the compressible Navier-Stokes equation around the plane Couette flow

MI2009-8 Shohei TATEISHI, Hidetoshi MATSUI & Sadanori KONISHI
Nonlinear regression modeling via the lasso-type regularization

MI2009-9 Takeshi TAKAISHI & Masato KIMURA
Phase field model for mode III crack growth in two dimensional elasticity

MI2009-10 Shingo SAITO
Generalisation of Mack’s formula for claims reserving with arbitrary exponents for the variance assumption

MI2009-11 Kenji KAIJWARA, Masanobu KANEKO, Atsushi NOBE & Teruhisa TSUDA
Ultradiscretization of a solvable two-dimensional chaotic map associated with the Hesse cubic curve

MI2009-12 Tetsu MASUDA
Hypergeometric τ-functions of the q-Painlevé system of type $E_{8}^{(1)}$

MI2009-13 Hidenao IWANE, Hitoshi YANAMI, Hirokazu ANAI & Kazuhiro YOKOYAMA
A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic Decomposition for Quantifier Elimination

MI2009-14 Yasunori MAEKAWA
On Gaussian decay estimates of solutions to some linear elliptic equations and its applications
MI2009-15 Yuya ISHIHARA & Yoshiyuki KAGEI
Large time behavior of the semigroup on L^p spaces associated with the linearized compressible Navier-Stokes equation in a cylindrical domain

MI2009-16 Chikashi ARITA, Atsuo KUNIBA, Kazumitsu SAKAI & Tsuyoshi SAWABE
Spectrum in multi-species asymmetric simple exclusion process on a ring

MI2009-17 Masato WAKAYAMA & Keitaro YAMAMOTO
Non-linear algebraic differential equations satisfied by certain family of elliptic functions

MI2009-18 Me Me NAING & Yasuhide FUKUMOTO
Local Instability of an Elliptical Flow Subjected to a Coriolis Force

MI2009-19 Mitsunori KAYANO & Sadanori KONISHI
Sparse functional principal component analysis via regularized basis expansions and its application

MI2009-20 Shuichi KAWANO & Sadanori KONISHI
Semi-supervised logistic discrimination via regularized Gaussian basis expansions

MI2009-21 Hiroshi YOSHIDA, Yoshihiro MIWA & Masanobu KANEKO
Elliptic curves and Fibonacci numbers arising from Lindenmayer system with symbolic computations

MI2009-22 Eiji ONODERA
A remark on the global existence of a third order dispersive flow into locally Hermitean symmetric spaces

MI2009-23 Stjepan LUGOMER & Yasuhide FUKUMOTO
Generation of ribbons, helicoids and complex scherk surface in laser-matter Interactions

MI2009-24 Yu KAWAKAMI
Recent progress in value distribution of the hyperbolic Gauss map

MI2009-25 Takehiko KINOSHITA & Mitsuhiro T. NAKAO
On very accurate enclosure of the optimal constant in the a priori error estimates for H^2_0-projection

MI2009-26 Manabu YOSHIDA
Ramification of local fields and Fontaine’s property (Pm)

MI2009-27 Yu KAWAKAMI
Value distribution of the hyperbolic Gauss maps for flat fronts in hyperbolic three-space

MI2009-28 Masahisa TABATA
Numerical simulation of fluid movement in an hourglass by an energy-stable finite element scheme

MI2009-29 Yoshiyuki KAGEI & Yasunori MAEKAWA
Asymptotic behaviors of solutions to evolution equations in the presence of translation and scaling invariance
MI2009-30 Yoshiyuki KAGEI & Yasunori MAEKAWA
On asymptotic behaviors of solutions to parabolic systems modelling chemotaxis

MI2009-31 Masato WAKAYAMA & Yoshinori YAMASAKI
Hecke’s zeros and higher depth determinants

MI2009-32 Olivier PIRONNEAU & Masahisa TABATA
Stability and convergence of a Galerkin-characteristics finite element scheme of lumped mass type

MI2009-33 Chikashi ARITA
Queueing process with excluded-volume effect

MI2009-34 Kenji KAJIWARA, Nobutaka NAKAZONO & Teruhisa TSUDA
Projective reduction of the discrete Painlevé system of type$(A_2 + A_1)^{(1)}$

MI2009-35 Yosuke MIZUYAMA, Takamasa SHINDE, Masahisa TABATA & Daisuke TAGAMI
Finite element computation for scattering problems of micro-hologram using DtN map

MI2009-36 Reiichiro KAWAI & Hiroki MASUDA
Exact simulation of finite variation tempered stable Ornstein-Uhlenbeck processes

MI2009-37 Hiroki MASUDA
On statistical aspects in calibrating a geometric skewed stable asset price model

MI2010-1 Hiroki MASUDA
Approximate self-weighted LAD estimation of discretely observed ergodic Ornstein-Uhlenbeck processes

MI2010-2 Reiichiro KAWAI & Hiroki MASUDA
Infinite variation tempered stable Ornstein-Uhlenbeck processes with discrete observations

MI2010-3 Kei HIROSE, Shuichi KAWANO, Daisuke MIKE & Sadanori KONISHI
Hyper-parameter selection in Bayesian structural equation models

MI2010-4 Nobuyuki IKEDA & Setsuo TANIGUCHI
The Itô-Nisio theorem, quadratic Wiener functionals, and 1-solitons

MI2010-5 Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling and detecting change point via the relevance vector machine

MI2010-6 Shuichi KAWANO, Toshihiro MISUMI & Sadanori KONISHI
Semi-supervised logistic discrimination via graph-based regularization

MI2010-7 Teruhisa TSUDA
UC hierarchy and monodromy preserving deformation

MI2010-8 Takahiro ITO
Abstract collision systems on groups
MI2010-9 Hiroshi YOSHIDA, Kinji KIMURA, Naoki YOSHIDA, Junko TANAKA & Yoshihiro MIWA
An algebraic approach to underdetermined experiments

MI2010-10 Kei HIROSE & Sadanori KONISHI
Variable selection via the grouped weighted lasso for factor analysis models

MI2010-11 Katsusuke NABESHIMA & Hiroshi YOSHIDA
Derivation of specific conditions with Comprehensive Groebner Systems

MI2010-12 Yoshiyuki KAGEI, Yu NAGAFUCHI & Takeshi SUDOU
Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Poiseuille type flow

MI2010-13 Reiichiro KAWAI & Hiroki MASUDA
On simulation of tempered stable random variates

MI2010-14 Yoshiyasu OZEKI
Non-existence of certain Galois representations with a uniform tame inertia weight

MI2010-15 Me Me NAING & Yasuhide FUKUMOTO
Local Instability of a Rotating Flow Driven by Precession of Arbitrary Frequency

MI2010-16 Yu KAWAKAMI & Daisuke NAKAJO
The value distribution of the Gauss map of improper affine spheres

MI2010-17 Kazunori YASUTAKE
On the classification of rank 2 almost Fano bundles on projective space

MI2010-18 Toshimitsu TAKAESU
Scaling limits for the system of semi-relativistic particles coupled to a scalar bose field

MI2010-19 Reiichiro KAWAI & Hiroki MASUDA
Local asymptotic normality for normal inverse Gaussian Lévy processes with high-frequency sampling

MI2010-20 Yasuhide FUKUMOTO, Makoto HIROTA & Youichi MIE
Lagrangian approach to weakly nonlinear stability of an elliptical flow

MI2010-21 Hiroki MASUDA
Approximate quadratic estimating function for discretely observed Lévy driven SDEs with application to a noise normality test

MI2010-22 Toshimitsu TAKAESU
A Generalized Scaling Limit and its Application to the Semi-Relativistic Particles System Coupled to a Bose Field with Removing Ultraviolet Cutoffs

MI2010-23 Takahiro ITO, Mitsuhiko FUJIO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Composition, union and division of cellular automata on groups

MI2010-24 Toshimitsu TAKAESU
A Hardy’s Uncertainty Principle Lemma in Weak Commutation Relations of Heisenberg-Lie Algebra
MI2010-25 Toshimitsu TAKAESU
On the Essential Self-Adjointness of Anti-Commutative Operators

MI2010-26 Reiichiro KAWAI & Hiroki MASUDA
On the local asymptotic behavior of the likelihood function for Meixner Lévy processes under high-frequency sampling

MI2010-27 Chikashi ARITA & Daichi YANAGISAWA
Exclusive Queueing Process with Discrete Time

MI2010-28 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA & Yasuhiro OHTA
Motion and Bäcklund transformations of discrete plane curves

MI2010-29 Takanori YASUDA, Masaya YASUDA, Takeshi SHIMOYAMA & Jun KOGURE
On the Number of the Pairing-friendly Curves

MI2010-30 Chikashi ARITA & Kohei MOTEGI
Spin-spin correlation functions of the q-VBS state of an integer spin model

MI2010-31 Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling and spike detection via Gaussian basis expansions

MI2010-32 Nobutaka NAKAZONO
Hypergeometric τ functions of the q-Painlevé systems of type $(A_2 + A_1)^{(1)}$

MI2010-33 Yoshiyuki KAGEI
Global existence of solutions to the compressible Navier-Stokes equation around parallel flows

MI2010-34 Nobushige KUROKAWA, Masato WAKAYAMA & Yoshinori YAMASAKI
Milnor-Selberg zeta functions and zeta regularizations

MI2010-35 Kissani PERERA & Yoshihiro MIZOGUCHI
Laplacian energy of directed graphs and minimizing maximum outdegree algorithms

MI2010-36 Takanori YASUDA
CAP representations of inner forms of $Sp(4)$ with respect to Klingen parabolic subgroup

MI2010-37 Chikashi ARITA & Andreas SCHADSCHNEIDER
Dynamical analysis of the exclusive queueing process

MI2011-1 Yasuhide FUKUMOTO & Alexander B. SAMOKHIN
Singular electromagnetic modes in an anisotropic medium

MI2011-2 Hiroki KONDO, Shingo SAITO & Setsuo TANIGUCHI
Asymptotic tail dependence of the normal copula

MI2011-3 Takehiro HIROTSU, Hiroki KONDO, Shingo SAITO, Takuya SATO, Tatsushi TANAKA & Setsuo TANIGUCHI
Anderson-Darling test and the Malliavin calculus

MI2011-4 Hiroshi INOUE, Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling via Compressed Sensing
MI2011-5 Hiroshi INOUE
Implications in Compressed Sensing and the Restricted Isometry Property

MI2011-6 Daeju KIM & Sadanori KONISHI
Predictive information criterion for nonlinear regression model based on basis expansion methods

MI2011-7 Shohei TATEISHI, Chiaki KINJYO & Sadanori KONISHI
Group variable selection via relevance vector machine

MI2011-8 Jan BREZINA & Yoshiyuki KAGEI
Decay properties of solutions to the linearized compressible Navier-Stokes equation around time-periodic parallel flow
Group variable selection via relevance vector machine

MI2011-9 Chikashi ARITA, Arvind AYYER, Kirone MALLICK & Sylvain PROLHAC
Recursive structures in the multispecies TASEP

MI2011-10 Kazunori YASUTAKE
On projective space bundle with nef normalized tautological line bundle

MI2011-11 Hisashi ANDO, Mike HAY, Kenji KAJIWARA & Tetsu MASUDA
An explicit formula for the discrete power function associated with circle patterns of Schramm type

MI2011-12 Yoshiyuki KAGEI
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a parallel flow

MI2011-13 Vladimír CHALUPECKÝ & Adrian MUNTEAN
Semi-discrete finite difference multiscale scheme for a concrete corrosion model: approximation estimates and convergence

MI2011-14 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA & Yasuhiro OHTA
Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves

MI2011-15 Hiroshi INOUE
A generalization of restricted isometry property and applications to compressed sensing

MI2011-16 Yu KAWAKAMI
A ramification theorem for the ratio of canonical forms of flat surfaces in hyperbolic three-space

MI2011-17 Naoyuki KAMIYAMA
Matroid intersection with priority constraints

MI2012-1 Kazufumi KIMOTO & Masato WAKAYAMA
Spectrum of non-commutative harmonic oscillators and residual modular forms

MI2012-2 Hiroki MASUDA
Mighty convergence of the Gaussian quasi-likelihood random fields for ergodic Levy driven SDE observed at high frequency
MI2012-3 Hiroshi INOUE
A Weak RIP of theory of compressed sensing and LASSO

MI2012-4 Yasuhide FUKUMOTO & Youich MIE
Hamiltonian bifurcation theory for a rotating flow subject to elliptic straining field

MI2012-5 Yu KAWAKAMI
On the maximal number of exceptional values of Gauss maps for various classes of surfaces

MI2012-6 Marcio GAMEIRO, Yasuaki HIRAOKA, Shunsuke IZUMI, Miroslav KRAMAR, Konstantin MISCHAIKOW & Vidit NANDA
Topological Measurement of Protein Compressibility via Persistence Diagrams

MI2012-7 Nobutaka NAKAZONO & Seiji NISHIOKA
Solutions to a q-analog of Painlevé III equation of type $D^{(1)}_7$

MI2012-8 Naoyuki KAMIYAMA
A new approach to the Pareto stable matching problem

MI2012-9 Jan BREZINA & Yoshiyuki KAGEI
Spectral properties of the linearized compressible Navier-Stokes equation around time-periodic parallel flow

MI2012-10 Jan BREZINA
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a time-periodic parallel flow

MI2012-11 Daeju KIM, Shuichi KAWANO & Yoshiyuki NINOMIYA
Adaptive basis expansion via the extended fused lasso

MI2012-12 Masato WAKAYAMA
On simplicity of the lowest eigenvalue of non-commutative harmonic oscillators

MI2012-13 Masatoshi OKITA
On the convergence rates for the compressible Navier- Stokes equations with potential force

MI2013-1 Abduwali PAERHATI & Yasuhide FUKUMOTO
A Counter-example to Thomson-Tait-Chetayev’s Theorem

MI2013-2 Yasuhide FUKUMOTO & Hirofumi SAKUMA
A unified view of topological invariants of barotropic and baroclinic fluids and their application to formal stability analysis of three-dimensional ideal gas flows

MI2013-3 Hiroki MASUDA
Asymptotics for functionals of self-normalized residuals of discretely observed stochastic processes

MI2013-4 Naoyuki KAMIYAMA
On Counting Output Patterns of Logic Circuits

MI2013-5 Hiroshi INOUE
RIPless Theory for Compressed Sensing
MI2013-6 Hiroshi INOUE
Improved bounds on Restricted isometry for compressed sensing

MI2013-7 Hidetoshi MATSUI
Variable and boundary selection for functional data via multiclass logistic regression modeling

MI2013-8 Hidetoshi MATSUI
Variable selection for varying coefficient models with the sparse regularization

MI2013-9 Naoyuki KAMIYAMA
Packing Arborescences in Acyclic Temporal Networks

MI2013-10 Masato WAKAYAMA
Equivalence between the eigenvalue problem of non-commutative harmonic oscillators and existence of holomorphic solutions of Heun’s differential equations, eigenstates degeneration, and Rabi’s model

MI2013-11 Masatoshi OKITA
Optimal decay rate for strong solutions in critical spaces to the compressible Navier-Stokes equations

MI2013-12 Shuichi KAWANO, Ibuki HOSHINA, Kazuki MATSUDA & Sadanori KONISHI
Predictive model selection criteria for Bayesian lasso

MI2013-13 Hayato CHIBA
The First Painleve Equation on the Weighted Projective Space

MI2013-14 Hidetoshi MATSUI
Variable selection for functional linear models with functional predictors and a functional response

MI2013-15 Naoyuki KAMIYAMA
The Popular Condensation Problem under Matroid Constraints

MI2013-16 Hidetoshi MATSUI
Selection of classification boundaries using the logistic regression

MI2014-1 Naoyuki KAMIYAMA
Popular Matchings under Matroid Constraints

MI2014-2 Yasuhide FUKUMOTO & Youichi MIE
Lagrangian approach to weakly nonlinear interaction of Kelvin waves and a symmetry-breaking bifurcation of a rotating flow

MI2014-3 Reika AOYAMA
Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Parallel flow in a cylindrical domain

MI2014-4 Naoyuki KAMIYAMA
The Popular Condensation Problem under Matroid Constraints
MI2014-5 Yoshiyuki KAGEI & Kazuyuki TSUDA
Existence and stability of time periodic solution to the compressible Navier-Stokes equation for time periodic external force with symmetry

MI2014-6 This paper was withdrawn by the authors.

MI2014-7 Masatoshi OKITA
On decay estimate of strong solutions in critical spaces for the compressible Navier-Stokes equations

MI2014-8 Rong ZOU & Yasuhide FUKUMOTO
Local stability analysis of azimuthal magnetorotational instability of ideal MHD flows

MI2014-9 Yoshiyuki KAGEI & Naoki MAKIO
Spectral properties of the linearized semigroup of the compressible Navier-Stokes equation on a periodic layer

MI2014-10 Kazuyuki TSUDA
On the existence and stability of time periodic solution to the compressible Navier-Stokes equation on the whole space

MI2014-11 Yoshiyuki KAGEI & Takaaki NISHIDA
Instability of plane Poiseuille flow in viscous compressible gas