A Counter-example to Thomson-Tait-Chetayev’s Theorem

Abuduwaili Paerhati
& Yasuhide Fukumoto

MI 2013-1

(Received January 8, 2013)
In general, dissipation tends to calm down the motion, and is liable to be regarded as a stabilizing agent. As opposed to this intuition, there are an abundance of phenomena belonging to the category of dissipation-induced instabilities, over a wide range of the fields including mechanical systems, and motion of solids, fluids and plasmas. Dissipation-induced instability originates from a negative-energy mode of a Hamiltonian system which resides only around a non-trivial or moving stationary state.

There is a simple mechanical system that illustrates stabilizing effect by a gyroscopic force but that the stability is lost by an introduction of arbitrary small dissipative force.

\[\ddot{q}_1 + \Omega \dot{q}_2 + \delta \dot{q}_1 + c_1 q_1 = 0, \]
\[\ddot{q}_2 - \Omega \dot{q}_1 + \delta \dot{q}_2 + c_2 q_2 = 0, \]

where \(q(t) = (q_1(t), q_2(t)) \) are functions of time \(t \), with a dot signifying the differentiation in \(t \), and the terms endowed with constants \(\Omega \) and \(\delta \) (\(\geq 0 \)) represents gyroscopic and dissipative forces, respectively. The last terms represent the potential force linear in \(q(t) \). In the absence of both the gyroscopic (\(\Omega = 0 \)) and the dissipative forces (\(\delta = 0 \)), when at least one of constants \(c_1 \) and \(c_2 \) is negative, the equilibrium state \(q = q_0 = 0 \) of the system (1) and (2) is spectrally unstable. When the both constants \(c_1 \) and \(c_2 \) are negative, this equilibrium state is stabilized by the gyroscopic force if \(|\Omega| > \sqrt{-c_1 + \sqrt{-c_1 c_2}} \). But the stability is lost by addition of the dissipative force however small it is. This result is summarized in the following general statement which is attributed to Thomson and Tait and Chetayev.

Theorem If a system without gyroscopic or dissipative forces has a nonzero degree of instability, the equilibrium remains unstable after the addition of gyroscopic and the dissipative forces.

This theorem implies that, if an unstable equilibrium is stabilized by a gyroscopic force, then the stability is destroyed by an introduction of arbitrary dissipative force. An example is brought from the motion of a heavy symmetrical top or a Lagrange top; (1) and (2) constitute the linearized equations around a stationary state of a Lagrange top, for which \(q_1(t) \) and \(q_2(t) \) are two of the Euler angles. The purpose of this letter is to demonstrate that there is an example of a mechanical system close to a Lagrange top which is exempted from Thomson-Tait-Chetayev’s theorem (TTC theorem). We remark that different counter-examples to TTC theorem had been found by a systematic mathematical analysis.

The motion of a Lagrange top is typically described in terms of the Euler angles which specify the configuration of the top as an element of SO(3), the special orthogonal group, in relation to the laboratory frame. The Lie-Poisson equations for the angular momentum and the gravity-vertical axis viewed from the frame fixed to the body provides another means for treatment. Because of the rotational symmetry about the top axis, the equations of motion are reduced only for the top axis by forgetting the rotation of the axis about itself. This amounts to reduce the configuration space SO(3), by the quotient with respect to \(S^1 \), to the spherical surface \(S^2 \cong SO(3)/S^1 \). This process reduces the system on SO(3) to a system governing the orbit of the unit vector \(t(t) \) parallel to the top axis as follows (see also ref\(^{[10]}\)).

Consider the motion of a rigid body with rotational symmetry about an axis, with one point \(O \) on it fixed in space, exerted by the gravity force. This assumption implies that one of the principal axes of the inertia tensor is coincident with the symmetric axis with identical components of the tensor with respect to the axes orthogonal to it and that the center of gravity lies on the symmetric axis. This is the setting of a Lagrange top. If the fixed point \(O \) of the top axis does not coincide with the center of gravity, as a generic case, the gravity force exerts a torque on the top about \(O \).

Let \(\hat{t}(t) \) be the unit vector along the axis of symmetry, and \(e_1(t) \) and \(e_2(t) \) be unit orthogonal vectors in the plane perpendicular to it, fixed to the top, as functions of the time \(t \). If we denote the angular velocity of the body by \(\omega(t) \), the motion of the top axis is written as

\[\dot{t} = \omega \times t. \]
Taking the vector product of \(t \) with (4), we have
\[
\omega = t \times t + \omega_3 t, \tag{4}
\]
where \(\omega_3 = \omega \cdot t \) is the axial component of the angular velocity, which is shown to be a constant of the motion associated with the rotational symmetry of the body. The angular momentum \(M(t) \) relative to the stationary point \(O \), viewed from the inertial frame, is coined by imparting the moments of inertia about the stationary point \(O \) to the corresponding components of the angular velocity, giving,
\[
M = A t \times i + C \omega_3 t, \tag{5}
\]
where \(C \) and \(A \) are the moments of inertia about \(O \) with respect to the axial direction and the directions perpendicular to it, respectively. Newton’s second laws of mechanics states that the time-wise rate of change of the angular momentum about the stationary point \(O \) is equal to the moment of force about \(O \). In this letter, we apply, in addition to the gravity force, the drag force, proportional to the speed \(t \) of the axis, acting on the top axis in the direction of exactly opposing the motion. Without loss of generality, we may take the drag force \(-\delta t\) to act on the center of gravity, where \(-\delta (\geq 0)\) is a small positive constant. Newton’s law dictates
\[
M = lt \times (-mge.) + lt \times (-\delta t), \tag{6}
\]
where \(m \) is the mass of the body, \(-g e.\) is the gravity acceleration with \(e.\) being the unit vector in the \(z\)-direction taken vertically upwards, and \(l \) is the length of line segment connecting the stationary point \(O \) to the centre of mass. The last term stems from the drag force. We emphasize that this drag or friction is different from the usual frictional force acted at \(O \) by the boundary surface to slow down the rotation speed of the top axis, and thus to decrease \(|\omega_3| \). In our model (6), \(\omega_3 \) is constant.

This friction term acquires reality if we translate (6) into the equations for a spherical pendulum. Substituting (5) into (6) and thereafter taking the vector product with \(t \), we are left, after rearranging the terms, with
\[
A \ddot{\delta} = -mg[l e_2 - (t \cdot e_2)t] - A(t \cdot i) t - C \omega_3 i \times t - \delta t, \tag{7}
\]
where \(\delta = \dot{\delta} (\geq 0) \). This system of equations are interpreted as representing the motion of a spherical pendulum with the gravity acceleration replaced by \(mgl/A \), being directed in the negative \(z\)-axis. The first and second terms on the right-hand side of Eq. (7) signify that a point mass is exerted by the gravity force, the normal component of which is being projected out. The third one is the centrifugal force, and the fourth one is the Lorentz force in the field of a magnetic monopole located at \(O \). In accordance, the point mass is endowed with charge, and the ratio of the monopole field to the charge is \(-C \omega_3 / A \).\(^{30}\) The same force as this Lorentz force can be generated by the Magnus force, of aerodynamic origin, where the pendulum, of finite size, is rotating about \(t \). The last term is the drag force. In the context of a spherical pendulum, our drag force looks more natural.

When the drag force is switched off \((\delta = 0) \), (6) and (7) are equivalent to the equations governing a Lagrange top. However, some difference makes its appearance when we make headway to the stability analysis. Our system (7) describes an orbit on \(S^2 \), the reduced space. They describe only the time-wise change of the orientation of the axis \(t(t) \) with maintaining the value of \(\omega_3 \). The rotation angle about \(t(t) \) is prescribed in the sense that the perturbation does not affect \(\omega_3 \), though this is not the case with a Lagrange top.

For our purpose of making the stability analysis of stationary states, we rewrite the vector equation (7) in terms of a spherical coordinate system \((\theta, \phi)\) defined via \(t = (\sin \theta \cos \phi, \cos \theta \sin \phi, \cos \theta) \). By projecting (7) to \(e_\theta = (\cos \theta \cos \phi, \cos \theta \sin \phi, -\sin \theta) \) and to \(e_\phi = (-\sin \phi, \cos \phi, 0) \), we obtain, respectively,
\[
A(\dot{\theta} - \delta \sin \theta \cos \phi = mg l \sin \theta - C \omega_3 \phi \sin \theta - \delta \theta, \tag{8}
\]
\[
A(\ddot{\phi} \sin \theta + 2\dot{\phi} \cos \theta = C \omega_3 \theta - \delta \phi \sin \theta. \tag{9}
\]
Observe that our coupled equations (8) and (9) bear some resemblance with the prototypical linear gyroscopic system (1) and (2) augmented with the dissipative force. There are gyroscopic terms, with coefficient \(C \omega_3 \), on the right-hand side of (8) and (9). The gyroscopic force is generated by rotation \((\omega_3 \neq 0)\) of the top axis about itself, and its strength is proportional to the axial component \(M_3 = C \omega_3 \) of the angular momentum. The last terms, having the coefficient \(\delta \), signify the drag force. A marked difference lie is the fact that coupled equations (8) and (9) are nonlinear in dependent variables \(\theta \) and \(\phi \) in contrast with (1) and (2). In the sequel, we explore how the drag force modifies the spectral stability of typical stationary sates of the heavy symmetrical top.

We start with the stability of the so-called ‘sleeping top’. This is a static state, executing neither nutation nor precession, with the top axis directed vertically upward. This upright orientation is expressed by
\[
\theta(t) \equiv 0 \text{ for all } t, \quad \phi(t) = \Phi(t), \tag{10}
\]
where \(\Phi(0) \) is an arbitrary function of time \(t \). The arbitrary function is admitted because the azimuthal angle \(\phi \) is undefined when \(\sin \theta = 0 \), namely, when \(\theta = 0 \) and \(\pi \). We confirm by direct substitution that (10) is indeed a solution of (8) and (9).

We then consider the linear stability of this upright position (10). Substituting \(\theta(t) = \tilde{\theta}(t) \) and \(\phi(t) = \Phi + \tilde{\phi}(t) \) into (8) and (9) and linearizing in the perturbation amplitude \(|\tilde{\theta}| \) and \(|\tilde{\phi}| \) which are assumed to be of infinitesimal, we are left with
\[
A \ddot{\tilde{\theta}} + (C \omega_3 \Phi - A \tilde{\phi}^2 - mg l \hat{\theta} - \delta \hat{\theta}, \tag{11}
\]
\[
A \left(\ddot{\tilde{\phi}} + 2 \dot{\tilde{\phi}} \dot{\phi} - C \omega_3 \dot{\theta} - \delta \phi \dot{\theta}. \tag{12}
\]
Note that \(\delta \) does not appear. The case of \(\sin \theta = 0 \) is degenerate, in which two equations (11) and (12) are available for determining the single perturbation function \(\tilde{\theta}(t) \). A sensible interpretation could be that the problem of being overdetermined is resolved by compensating for it with arbitrariness of the basic state \(\Phi = \Phi(t) \). Crudely speaking, the time-evolution of \(\tilde{\theta}(t) \) is mainly determined by the first equation (11), and then the disposable function \(\Phi(t) \) is adjusted so as to satisfy the second equation (12).

For the moment, we ignore the drag force \((\delta = 0)\). Since (11) is a second-order linear homogeneous ordinary differential equation for \(\tilde{\theta} \), with a time-dependent coefficient. In such a case, a normal-mode solution of the form \(\tilde{\theta} = e^{\lambda t} \), with constant exponent \(\lambda \) is not allowed. The criterion for the linear stability is provided by the condition that the term proportional to \(\lambda \) is a ‘restoring force’, meaning that its coefficient

\(CW_{3} \Phi - A \dot{\Phi}^2 - mgl > 0 \). It is noteworthy that, if it were not for the gyroscopic force \(CW_{3} = 0 \), \(CW_{3} \Phi - A \dot{\Phi}^2 - mgl < 0 \) and no restoring force is available, being an immediately acceptable result. The Lorentz force generated by the magnetic monopole is requisite for the linear stability. Observe that, when \(CW_{3} \neq 0 \) and the linear perturbation \(\delta(t) \) behaves non-trivially, the second equation does not admit \(\Phi(t) \equiv 0 \). We may assume without loss of generality that \(\omega_{3} > 0 \), and correspondingly assume that \(\delta > 0 \), which is plausible in view of the balance of the second and the third terms on the left-hand side of (12). Then a sufficient condition for the linear stability is

\[
CW_{3} > A \Phi + \frac{mgl}{\Phi} \geq 2 \sqrt{Amgl},
\]

(13)

where use has been made of the relation of the arithmetic mean being greater than the geometric mean. Thus the well-known criterion for the stability of the sleeping top is restored;\(^{11}\) the sleeping top is stabilized if it rotates faster than the critical angular velocity as given above. When the stability condition (13) is met, the \(\dot{\theta} \)-term in (11) is restoring whatever the value of \(\Phi \), of the same sign as \(\omega_{3} \), is taken.

Next, we look into the influence of the drag force \((\delta > 0) \). By a change of the dependent variable

\[
\hat{\varphi} = \exp \left(-\frac{\delta}{2A} t \right) \varphi,
\]

(14)

the term with \(\delta \) is eliminated from (11), leaving

\[
\ddot{\varphi} + \left(CW_{3} \Phi - A \dot{\Phi}^2 - mgl - \frac{\delta^2}{4A} \right) \hat{\varphi} = 0.
\]

(15)

Since our concern is in the TTC theorem, we restrict our attention to influence of the small drag force on the gyroscopically stable case (13). To linear in \(\delta \), the condition (13) for restoring linear term remains intact

\[
CW_{3} > 2 \sqrt{Amgl} + \frac{\delta^2}{4} \geq 2 \sqrt{Amgl},
\]

(16)

though modification arises at \(O(\delta^2) \). If the gyroscopic force is strong, compared with the gravity and the centrifugal forces, enough for the inequality to be met, the upright orientation \((\theta = 0) \) is gyroscopically stable. A combination of (14) and (15) indicates that the friction exclusively acts to dam perturbations from the upright state exponentially in time. This result is not consistent with the aspect of the TTC theorem that stability of a state stabilized gyroscopically is lost by an introduction of arbitrary small dissipative force. The degeneracy of (12) at \(\theta = 0 \) prohibits manifestation of the perturbation variable \(\Phi \) from the linearized equations, whence the equilibrium \(\theta = 0 \) slips through the prescription of the TTC based on the linear gyroscopic system (1) and (2). As before, we can exploit the freedom of an arbitrary function \(\Phi(t) \) to fulfill (12). The arbitrariness \(\Phi(t) \) of the basic state of \(\phi \) accords with the disappearance with the perturbation \(\Phi \). With this, we close the description of our main result.

In order to see the relevance of our problem with the dissipation-induced stability, we turn to the precessing motion. This is a steadily rotating motion of a rigid body for which the top axis \(t \) describes a circular cone, with constant angle \(\theta_{0} \) \((0 < \theta_{0} < \pi) \) between \(t \) and \(e_{3} \), and with constant angular velocity \(\omega_{3} \) of rotation of \(t \) about \(e_{3} \). When the friction terms are discarded, (8) and (9) enforces

\[
\sin \theta_{0} \left(a_{3} \omega_{3} \cos \theta_{0} + ml - CW_{3} \Omega_{3} \right) = 0.
\]

(17)

Since \(\sin \theta_{0} \neq 0 \), (17) determines the angular velocity \(\Omega_{3} \) of the top axis about \(e_{3} \), in relation to the angular velocity \(\omega_{3} \) of the top axis about itself as

\[
\dot{\omega}_{3} \Omega_{3} = \hat{\varphi} + \Omega_{3} \cos \theta_{0},
\]

(18)

where \(\hat{\varphi} = mgl/A \) and \(\omega_{3} = CW_{3}/A \). Note that the sleeping top \((\theta = 0)\) and the gravitational equilibrium \((\theta = \pi)\) are isolated branches from the precessing motion \((\sin \theta_{0} \neq 0)\); they do not stand as the limiting solutions of (18).

We proceed to the linear stability analysis of the precessing motion. Posing the perturbed solution as \(\theta(t) = \theta_{0} + \tilde{\theta}(t) \) and \(\varphi(t) = \Omega_{3} t + \tilde{\varphi}(t) \), and substituting these into (8) and (9), we obtain, after linearization,

\[
\begin{align*}
\ddot{\varphi} & - 2\Omega_{3} \sin \theta_{0} \cos \theta_{0} \dot{\varphi} - \Omega_{3}^{2} (\cos^{2} \theta_{0} - \sin^{2} \theta_{0}) \dot{\theta}\sin \theta_{0} \\
& - \hat{\varphi} \cos \theta_{0} + \omega_{3} \Omega_{3} \cos \theta_{0} + \omega_{3} \dot{\varphi} \sin \theta_{0} \\
& = - \delta \dot{\varphi},
\end{align*}
\]

(19)

\[
\begin{align*}
\ddot{\theta} & - \omega_{3} \Omega_{3} \cos \theta_{0} - \Omega_{3} \dot{\varphi} \sin \theta_{0} \\
& = - \delta \Omega_{3} (\hat{\varphi} \cos \theta_{0} + \dot{\varphi} \sin \theta_{0}) - \delta \Omega_{3} \sin \theta_{0}.
\end{align*}
\]

(20)

As a preliminary step, we seek the spectral stability of frictionless motion \((\delta = 0)\). Substitution of the normal-mode form solution \(\varphi \propto e^{\lambda t}, \varphi \propto e^{\mu t} \) into (19) and (20) leads to the eigenvalue equation

\[
\sin \theta_{0} \lambda^{2} \left[\omega_{3}^{2} \sin^{2} \theta_{0} + (\omega_{3}^{2} - 2 \Omega_{3} \cos \theta_{0}) \right] = 0,
\]

(21)

Because of \(\sin \theta_{0} \neq 0 \), (21) yields \(\lambda = 0 \) as a degenerate eigenvalue and

\[
\lambda^{2} = - \omega_{3}^{2} \sin^{2} \theta_{0} - (\omega_{3}^{2} - 2 \Omega_{3} \cos \theta_{0}) \equiv -\alpha^{2},
\]

(22)

where \(\alpha > 0 \) is taken. Since \(\alpha^{2} > 0 \), the eigenvalues \(\lambda = \pm i \alpha \) given by (22) are pure imaginary, implying oscillations in time. As regards the spectral stability, the precessing motion is marginally stable with double zero eigenvalues.

We are now in a position to incorporate the influence of the drag force \((\delta \neq 0)\). The coupled equations (19) and (20) represent a forced oscillation with the last term of (20) acting as a forcing term. In this respect, the sleeping top and the gravitational equilibrium \((\sin \theta_{0} = 0)\) are exceptional in the sense that the forcing term disappears. First we inquire into how the drag force affects the spectra by ignoring the forcing term. Repeating the same procedure as above, we find that (21) gives way to

\[
\sin \theta_{0} \lambda \left[\lambda^{3} + 2 \lambda \omega_{3}^{2} + (\alpha^{2} + \delta^{2}) \lambda + \delta (\omega_{3}^{2} - \hat{\varphi} \cos \theta_{0}) \right] = 0,
\]

(23)

where use has been made of (18). For precessing motion \((\sin \theta_{0} \neq 0, \lambda = 0)\) is a still one of the eigenvalues. The other three go through modification by the friction effect. For weak drag force, the approximate values of the eigenvalues are, to \(O(\delta) \),

\[
\lambda = \left\{ \begin{array}{ll}
\frac{1}{\alpha^{2}} (\hat{\varphi} \cos \theta_{0} - \Omega_{3} \delta) + O(\delta^{2}), \\
\pm i \alpha \left[-1 + \frac{1}{2 \alpha^{2}} \omega_{3}^{2} (\hat{\varphi} \cos \theta_{0}) \right] + O(\delta^{2}).
\end{array} \right.
\]

(24)

When the real part of at least one of the eigenvalues (24) is
positive, the precessing motion with \(\theta = \theta_0 \) and \(\phi = \Omega_c \) is spectrally unstable, of dissipative origin.

It is well known that a simple spherical pendulum acted only by the gravity force \((C \omega_3 = 0) \) cannot maintain the pendulum above the fixed point for all time \(t \).\(^{11)} \) In keeping with the theme of a gyroscopically stabilized state, we restrict our attention to \(0 < \theta_0 < \pi/2 \) or \(0 < \cos \theta_0 < 1 \) for which the top axis is lifted above the horizontal direction, but not strictly aligned with the vertical axis. The tilting angle \(\theta_0 \) should be initially prescribed. The quantity \(C \omega_3 \) naturally serves as a control parameter. This may be considered to be the angular velocity of the top axis driven by one’s fingers in the context of a Lagrange top or alternatively to be the strength of the magnetic monopole in the context of a charged spherical pendulum. Given the values of \(\hat{g}, \theta_0 \) and \(\omega_3 \), (18) has two roots for \(\Omega_c \), as

\[
\Omega_c = \frac{1}{2} \left(\frac{\dot{\omega}_3}{\cos \theta_0} \pm \sqrt{\frac{\dot{\omega}_3^2}{\cos^2 \theta_0} - \frac{4\hat{g}}{\cos \theta_0}} \right). \tag{25}
\]

In view of the series form (24) of the eigenvalue, the real part of \(\hat{g} \), \(\theta_0 \) and \(\omega_3 \), (18) has two roots for \(\Omega_c \), as

\[
\Omega_c = \frac{1}{2} \left(\frac{\dot{\omega}_3}{\cos \theta_0} \pm \sqrt{\frac{\dot{\omega}_3^2}{\cos^2 \theta_0} - \frac{4\hat{g}}{\cos \theta_0}} \right). \tag{25}
\]

In view of the series form (24) of the eigenvalue, the real part depends on \(\Omega_c^2 \), and hence we may take \(\dot{\omega}_3 \geq 0 \). The motion with the larger \(\Omega_c \) of plus sign, \(\Omega_c^+ \) say, is referred to as the fast precession, and that with the smaller \(\Omega_c \), of minus sign, \(\Omega_c^- \) is referred to as the slow precession.\(^{11)} \) Numerical examples suggest that, for the fast precession, the real parts of the three roots (23) are negative, but that, for the slow precession, the real part of the real root among (23) is positive if \(\omega_3 \) is not very small. The latter case complies with the typical scenario of the dissipation-induced instability. The smaller one \(\Omega_c^- \) is a decreasing function in \(\dot{\omega}_3/\cos \theta_0(> 0) \), and \(\Omega_c^+ \) becomes smaller than \(\hat{g} \cos \theta_0 \) if \(\dot{\omega}_3 > \sqrt{\hat{g}/\cos \theta_0(\cos^2 \theta_0 + 1)} \). Over this wide parameter range, the real root represented in series form in \(\delta \), among (24), \(A_1 \approx (\hat{g} \cos \theta_0 - \Omega_c^2)\delta/\alpha^2 > 0 \), and the dissipation-induced instability is invited.

In this letter, we have highlighted the influence of the drag force on the spectra. However, the drag force supplies the inhomogeneous term as given by the last one of (20). To grasp a crude picture of the overall evolution of the top axis, we draw in Fig. 1 the orbit of the top of \(t \) on the unit sphere by numerically integrating (19) and (20) with a choice of typical parameter values corresponding to a precession. Here we fix \(\hat{g} = 1/2, \dot{\omega}_3 = 2.5, \delta = 0.05 \), and set, as the initial conditions, \(\theta(0) = \pi/6, \dot{\theta}(0) = 0 \) and \(\phi(0) = 0 \), and \(\phi(0) = \Omega_c^- \approx 0.2162 \) (left), the smaller one of (25), and \(\phi(0) = \Omega_c^+ \approx 2.671 \) (right), the larger one. The branch of \(\phi(0) = \Omega_c^- \) suffers from the dissipation-induced instability with the eigenvalues provided by \(\lambda = 0, \lambda \approx 0.004261 \) and \(-0.05213 \pm 2.128i \). For the slow precession, the drag force acts to tilt down the top axis monotonically toward the gravitational equilibrium \((\theta_0 = 0) \). The fast branch of \(\phi(0) = \Omega_c^+ \) has the eigenvalues, \(\lambda = 0, \lambda \approx -0.005316 \) and \(-0.02342 \pm 2.510i \), being free from the instability. To our surprise, for the fast precession, with no instability, the drag acts to tilt up the top axis toward the upright orientation \((\theta_0 = 0) \). Notwithstanding the system is losing energy as a whole, the dissipation acts to lift the center of gravity against the gravity force.

The upright orientation of the top axis is a gyroscopically stable equilibrium, which is totally isolated from the precessing motion. This is by no means the limit of the precession, and the equations determining the spectrum are highly degenerate. For small values of the drag force, no dissipation-induced instability is admitted. There are several questions to wait for answers, such as the nonlinear evolution of the sleeping top and the origin of drag-induced lifting up of the axis for the fast precession. These and other issues are left for a future investigation.

Acknowledgment Y. F. is grateful to Peter Lancaster who brought Y. F.’s attention to his inspiring discovery of counter-examples to the TTC theorem.\(^{6)} \) Y. F. was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (Grant No. 24540407).

List of MI Preprint Series, Kyushu University
The Global COE Program
Math-for-Industry Education & Research Hub

MI

MI2008-1 Takahiro ITO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Abstract collision systems simulated by cellular automata

MI2008-2 Eiji ONODERA
The intial value problem for a third-order dispersive flow into compact almost Her-mitian manifolds

MI2008-3 Hiroaki KIDO
On isosceles sets in the 4-dimensional Euclidean space

MI2008-4 Hirofumi NOTSU
Numerical computations of cavity flow problems by a pressure stabilized characteristic-curve finite element scheme

MI2008-5 Yoshiyasu OZEKI
Torsion points of abelian varieties with values in infinite extensions over a p-adic field

MI2008-6 Yoshiyuki TOMIYAMA
Lifting Galois representations over arbitrary number fields

MI2008-7 Takehiro HIROTSU & Setsuo TANIGUCHI
The random walk model revisited

MI2008-8 Silvia GANDY, Masaaki KANNO, Hirokazu ANAI & Kazuhiro YOKOYAMA
Optimizing a particular real root of a polynomial by a special cylindrical algebraic decomposition

MI2008-9 Kazufumi KIMOTO, Sho MATSUMOTO & Masato WAKAYAMA
Alpha-determinant cyclic modules and Jacobi polynomials

MI2008-10 Sangyeol LEE & Hiroki MASUDA
Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Observed Univariate SDE

MI2008-11 Hiroyuki CHIHARA & Eiji ONODERA
A third order dispersive flow for closed curves into almost Hermitian manifolds

MI2008-12 Takehiko KINOSHITA, Kouji HASHIMOTO and Mitsuhiko T. NAKAO
On the L^2 a priori error estimates to the finite element solution of elliptic problems with singular adjoint operator

MI2008-13 Jacques FARAUT and Masato WAKAYAMA
Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek polynomials
MI2008-14 Takashi NAKAMURA
Riemann zeta-values, Euler polynomials and the best constant of Sobolev inequality

MI2008-15 Takashi NAKAMURA
Some topics related to Hurwitz-Lerch zeta functions

MI2009-1 Yasuhide FUKUMOTO
Global time evolution of viscous vortex rings

MI2009-2 Hidetoshi MATSUI & Sadanori KONISHI
Regularized functional regression modeling for functional response and predictors

MI2009-3 Hidetoshi MATSUI & Sadanori KONISHI
Variable selection for functional regression model via the L_1 regularization

MI2009-4 Shuichi KAWANO & Sadanori KONISHI
Nonlinear logistic discrimination via regularized Gaussian basis expansions

MI2009-5 Toshiro HIRANOUCHI & Yuichiro TAGUCHII
Flat modules and Groebner bases over truncated discrete valuation rings

MI2009-6 Kenji KAJIWARA & Yasuhiro OHTA
Bilinearization and Casorati determinant solutions to non-autonomous 1+1 dimensional discrete soliton equations

MI2009-7 Yoshiyuki KAGEI
Asymptotic behavior of solutions of the compressible Navier-Stokes equation around the plane Couette flow

MI2009-8 Shohei TATEISHI, Hidetoshi MATSUI & Sadanori KONISHI
Nonlinear regression modeling via the lasso-type regularization

MI2009-9 Takeshi TAKAISHI & Masato KIMURA
Phase field model for mode III crack growth in two dimensional elasticity

MI2009-10 Shingo SAITO
Generalisation of Mack’s formula for claims reserving with arbitrary exponents for the variance assumption

MI2009-11 Kenji KAJIWARA, Masanobu KANEKO, Atsushi NOBE & Teruhisa TSUDA
Ultradiscretization of a solvable two-dimensional chaotic map associated with the Hesse cubic curve

MI2009-12 Tetsu MASUDA
Hypergeometric \mathcal{H}-functions of the q-Painlevé system of type $E_8^{(1)}$

MI2009-13 Hidenao IWANE, Hitoshi YANAMI, Hirokazu ANAI & Kazuhiro YOKOYAMA
A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic Decomposition for Quantifier Elimination

MI2009-14 Yasunori MAEKAWA
On Gaussian decay estimates of solutions to some linear elliptic equations and its applications
MI2009-15 Yuya ISHIHARA & Yoshiyuki KAGEI
Large time behavior of the semigroup on L^p spaces associated with the linearized compressible Navier-Stokes equation in a cylindrical domain

MI2009-16 Chikashi ARITA, Atsuo KUNIBA, Kazumitsu SAKAI & Tsuyoshi SAWABE
Spectrum in multi-species asymmetric simple exclusion process on a ring

MI2009-17 Masato WAKAYAMA & Keitaro YAMAMOTO
Non-linear algebraic differential equations satisfied by certain family of elliptic functions

MI2009-18 Me Me NAING & Yasuhide FUKUMOTO
Local Instability of an Elliptical Flow Subjected to a Coriolis Force

MI2009-19 Mitsunori KAYANO & Sadanori KONISHI
Sparse functional principal component analysis via regularized basis expansions and its application

MI2009-20 Shuichi KAWANO & Sadanori KONISHI
Semi-supervised logistic discrimination via regularized Gaussian basis expansions

MI2009-21 Hiroshi YOSHIDA, Yoshihiro MIWA & Masanobu KANEKO
Elliptic curves and Fibonacci numbers arising from Lindenmayer system with symbolic computations

MI2009-22 Eiji ONODERA
A remark on the global existence of a third order dispersive flow into locally Hermitian symmetric spaces

MI2009-23 Stjepan LUGOMER & Yasuhide FUKUMOTO
Generation of ribbons, helicoids and complex scherk surface in laser-matter Interactions

MI2009-24 Yu KAWAKAMI
Recent progress in value distribution of the hyperbolic Gauss map

MI2009-25 Takehiko KINOSHITA & Mitsuhiro T. NAKAO
On very accurate enclosure of the optimal constant in the a priori error estimates for H^2_0-projection

MI2009-26 Manabu YOSHIDA
Ramification of local fields and Fontaine’s property (Pm)

MI2009-27 Yu KAWAKAMI
Value distribution of the hyperbolic Gauss maps for flat fronts in hyperbolic three-space

MI2009-28 Masahisa TABATA
Numerical simulation of fluid movement in an hourglass by an energy-stable finite element scheme

MI2009-29 Yoshiyuki KAGEI & Yasunori MAEKAWA
Asymptotic behaviors of solutions to evolution equations in the presence of translation and scaling invariance
Yoshiyuki KAGEI & Yasunori MAEKAWA
On asymptotic behaviors of solutions to parabolic systems modelling chemotaxis

Masato WAKAYAMA & Yoshinori YAMASAKI
Hecke’s zeros and higher depth determinants

Olivier PIRONNEAU & Masahisa TABATA
Stability and convergence of a Galerkin-characteristics finite element scheme of lumped mass type

Chikashi ARITA
Queueing process with excluded-volume effect

Kenji KAJIWARA, Nobutaka NAKAZONO & Teruhisa TSUDA
Projective reduction of the discrete Painlevé system of type$(A_2 + A_1)^{(1)}$

Yosuke MIZUYAMA, Takamasa SHINDE, Masahisa TABATA & Daisuke TAGAMI
Finite element computation for scattering problems of micro-hologram using DtN map

Reiichiro KAWAI & Hiroki MASUDA
Exact simulation of finite variation tempered stable Ornstein-Uhlenbeck processes

Hiroki MASUDA
On statistical aspects in calibrating a geometric skewed stable asset price model

Hiroki MASUDA
Approximate self-weighted LAD estimation of discretely observed ergodic Ornstein-Uhlenbeck processes

Reiichiro KAWAI & Hiroki MASUDA
Infinite variation tempered stable Ornstein-Uhlenbeck processes with discrete observations

Kei HIROSE, Shuichi KAWANO, Daisuke MIIKE & Sadanori KONISHI
Hyper-parameter selection in Bayesian structural equation models

Nobuyuki IKEDA & Setsuo TANIGUCHI
The Itô-Nisio theorem, quadratic Wiener functionals, and 1-solitons

Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling and detecting change point via the relevance vector machine

Shuichi KAWANO, Toshihiro MISUMI & Sadanori KONISHI
Semi-supervised logistic discrimination via graph-based regularization

Teruhisa TSUDA
UC hierarchy and monodromy preserving deformation

Takahiro ITO
Abstract collision systems on groups
MI2010-9 Hiroshi YOSHIDA, Kinji KIMURA, Naoki YOSHIDA, Junko TANAKA & Yoshihiro MIWA
An algebraic approach to underdetermined experiments

MI2010-10 Kei HIROSE & Sadanori KONISHI
Variable selection via the grouped weighted lasso for factor analysis models

MI2010-11 Katsusuke NABESHIMA & Hiroshi YOSHIDA
Derivation of specific conditions with Comprehensive Groebner Systems

MI2010-12 Yoshiyuki KAGEI, Yu NAGAFUCHI & Takeshi SUDOU
Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Poiseuille type flow

MI2010-13 Reiichiro KAWAI & Hiroki MASUDA
On simulation of tempered stable random variates

MI2010-14 Yoshiyasu OZEKI
Non-existence of certain Galois representations with a uniform tame inertia weight

MI2010-15 Me Me NAING & Yasuhide FUKUMOTO
Local Instability of a Rotating Flow Driven by Precession of Arbitrary Frequency

MI2010-16 Yu KAWAKAMI & Daisuke NAKAJO
The value distribution of the Gauss map of improper affine spheres

MI2010-17 Kazunori YASUTAKE
On the classification of rank 2 almost Fano bundles on projective space

MI2010-18 Toshimitsu TAKAESU
Scaling limits for the system of semi-relativistic particles coupled to a scalar bose field

MI2010-19 Reiichiro KAWAI & Hiroki MASUDA
Local asymptotic normality for normal inverse Gaussian Lévy processes with high-frequency sampling

MI2010-20 Yasuhide FUKUMOTO, Makoto HIROTA & Youichi MIE
Lagrangian approach to weakly nonlinear stability of an elliptical flow

MI2010-21 Hiroki MASUDA
Approximate quadratic estimating function for discretely observed Lévy driven SDEs with application to a noise normality test

MI2010-22 Toshimitsu TAKAESU
A Generalized Scaling Limit and its Application to the Semi-Relativistic Particles System Coupled to a Bose Field with Removing Ultraviolet Cutoffs

MI2010-23 Takahiro ITO, Mitsuhiko FUJIO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Composition, union and division of cellular automata on groups

MI2010-24 Toshimitsu TAKAESU
A Hardy’s Uncertainty Principle Lemma in Weak Commutation Relations of Heisenberg-Lie Algebra
MI2010-25 Toshimitsu TAKAESU
On the Essential Self-Adjointness of Anti-Commutative Operators

MI2010-26 Reiichiro KAWAI & Hiroki MASUDA
On the local asymptotic behavior of the likelihood function for Meixner Lévy processes under high-frequency sampling

MI2010-27 Chikashi ARITA & Daichi YANAGISAWA
Exclusive Queueing Process with Discrete Time

MI2010-28 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA & Yasuhiro OHTA
Motion and Bäcklund transformations of discrete plane curves

MI2010-29 Takanori YASUDA, Masaya YASUDA, Takeshi SHIMOYAMA & Jun KOGURE
On the Number of the Pairing-friendly Curves

MI2010-30 Chikashi ARITA & Kohei MOTEGI
Spin-spin correlation functions of the \(q \)-VBS state of an integer spin model

MI2010-31 Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling and spike detection via Gaussian basis expansions

MI2010-32 Nobutaka NAKAZONO
Hypergeometric \(\tau \) functions of the \(q \)-Painlevé systems of type \((A_2 + A_1)^{(1)} \)

MI2010-33 Yoshiyuki KAGEI
Global existence of solutions to the compressible Navier-Stokes equation around parallel flows

MI2010-34 Nobushige KUROKAWA, Masato WAKAYAMA & Yoshinori YAMASAKI
Milnor-Selberg zeta functions and zeta regularizations

MI2010-35 Kissani PERERA & Yoshihiro MIZOGUCHI
Laplacian energy of directed graphs and minimizing maximum outdegree algorithms

MI2010-36 Takanori YASUDA
CAP representations of inner forms of \(Sp(4) \) with respect to Klingen parabolic subgroup

MI2010-37 Chikashi ARITA & Andreas SCHADSCHNEIDER
Dynamical analysis of the exclusive queueing process

MI2011-1 Yasuhide FUKUMOTO & Alexander B. SAMOKHIN
Singular electromagnetic modes in an anisotropic medium

MI2011-2 Hiroki KONDO, Shingo SAIITO & Setsuo TANIGUCHI
Asymptotic tail dependence of the normal copula

MI2011-3 Takehiro HIROTsu, Hiroki KONDO, Shingo SAIITO, Takuya SATO, Tatsushi TANAKA & Setsuo TANIGUCHI
Anderson-Darling test and the Malliavin calculus

MI2011-4 Hiroshi INOUE, Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling via Compressed Sensing
MI2011-5 Hiroshi INOUE
Implications in Compressed Sensing and the Restricted Isometry Property

MI2011-6 Daeju KIM & Sadanori KONISHI
Predictive information criterion for nonlinear regression model based on basis expansion methods

MI2011-7 Shohei TATEISHI, Chiaki KINJYO & Sadanori KONISHI
Group variable selection via relevance vector machine

MI2011-8 Jan BREZINA & Yoshiyuki KAGEI
Decay properties of solutions to the linearized compressible Navier-Stokes equation around time-periodic parallel flow
Group variable selection via relevance vector machine

MI2011-9 Chikashi ARITA, Arvind AYYER, Kirone MALLICK & Sylvain PROLHAC
Recursive structures in the multispecies TASEP

MI2011-10 Kazunori YASUTAKE
On projective space bundle with nef normalized tautological line bundle

MI2011-11 Hisashi ANDO, Mike HAY, Kenji KAJIWARA & Tetsu MASUDA
An explicit formula for the discrete power function associated with circle patterns of Schramm type

MI2011-12 Yoshiyuki KAGEI
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a parallel flow

MI2011-13 Vladimír CHALUPECKÝ & Adrian MUNTEAN
Semi-discrete finite difference multiscale scheme for a concrete corrosion model: approximation estimates and convergence

MI2011-14 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA & Yasuhiro OHTA
Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves

MI2011-15 Hiroshi INOUE
A generalization of restricted isometry property and applications to compressed sensing

MI2011-16 Yu KAWAKAMI
A ramification theorem for the ratio of canonical forms of flat surfaces in hyperbolic three-space

MI2011-17 Naoyuki KAMIYAMA
Matroid intersection with priority constraints

MI2012-1 Kazufumi KIMOTO & Masato WAKAYAMA
Spectrum of non-commutative harmonic oscillators and residual modular forms

MI2012-2 Hiroki MASUDA
Mighty convergence of the Gaussian quasi-likelihood random fields for ergodic Levy driven SDE observed at high frequency
MI2012-3 Hiroshi INOUE
A Weak RIP of theory of compressed sensing and LASSO

MI2012-4 Yasuhide FUKUMOTO & Youich MIE
Hamiltonian bifurcation theory for a rotating flow subject to elliptic straining field

MI2012-5 Yu KAWAKAMI
On the maximal number of exceptional values of Gauss maps for various classes of surfaces

MI2012-6 Marcio GAMEIRO, Yasuaki HIRAOKA, Shunsuke IZUMI, Miroslav KRAMAR, Konstantin MISCHAIKOW & Vidit NANDA
Topological Measurement of Protein Compressibility via Persistence Diagrams

MI2012-7 Nobutaka NAKAZONO & Seiji NISHIOKA
Solutions to a q-analog of Painlevé III equation of type $D_7^{(1)}$

MI2012-8 Naoyuki KAMIYAMA
A new approach to the Pareto stable matching problem

MI2012-9 Jan BREZINA & Yoshiyuki KAGEI
Spectral properties of the linearized compressible Navier-Stokes equation around time-periodic parallel flow

MI2012-10 Jan BREZINA
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a time-periodic parallel flow

MI2012-11 Daeju KIM, Shuichi KAWANO & Yoshiyuki NINOMIYA
Adaptive basis expansion via the extended fused lasso

MI2012-12 Masato WAKAYAMA
On simplicity of the lowest eigenvalue of non-commutative harmonic oscillators

MI2012-13 Masatoshi OKITA
On the convergence rates for the compressible Navier- Stokes equations with potential force

MI2013-1 Abduwuiali PAERHATI & Yasuhide FUKUMOTO
A Counter-example to Thomson-Tait-Chetayev’s Theorem