Laplacian energy of directed graphs and minimizing maximum outdegree algorithms

Perera Kissani
& Yoshihiro Mizoguchi

MI 2010-35
(Received November 29, 2010)
Laplacian Energy of Directed Graphs and Minimizing Maximum Outdegree Algorithms

K.K.K.R. Pereraa, Y.Mizoguchib

aGraduate School of Mathematics, Kyushu University, Japan
bFaculty of Mathematics, Kyushu University, Japan

Abstract

Energy has been studied in mathematical perspective as well as physical perspective for several years ago. In spectral graph theory, the eigenvalues of several kinds of matrices have been studied, of which Laplacian matrix attracted the greatest attention [5]. Recently, in 2009, Adiga considered Laplacian energy of directed graphs using skew Laplacian matrix, in which degree of vertex is considered as total of the out-degree and the in-degree. Since directed graphs play an important role in identifying the structure of web-graphs as well as communication graphs, we consider Laplacian energy of simple directed graphs and find some relations by using the general definition of Laplacian matrix. Unlike in [1], we derived two types of equations for simple directed graphs and symmetric directed graphs with \(n \geq 2 \) vertices by considering out-degree of vertex. Further we consider the class \(P(\alpha) \) which consists of non isomorphic graphs with energy less than some \(\alpha \) and find 47 non isomorphic directed graphs for class \(P(10) \). Our objective extended to enumerate the structure of directed graphs using the Laplacian energy concept. Minimization maximum outdegree(MMO) algorithm defined in [3] can be used to find the directed graphs with minimum Laplacian energy.

Keywords: Laplacian energy, directed graph, MMO algorithms

1. Introduction

The relation between Hückel theory and the theory of graph spectra was observed for a long time. The basic problem in Hückel theory is to deter-
mine the eigenvalues and eigenvectors of the graph representing carbon atom connectivity of a given conjugated system. An interesting quantity is the sum of the energies of all the electrons in a molecule, called total \(\pi \)-electron energy \([5, 6, 9, 4, 8]\). Several criteria relate to energy such as energy change due to edge addition, maximal energy, equal energy has been considered in \([2, 9, 4]\). In spectral graph theory, the eigenvalues of several other matrices have been studied, of which Laplacian matrix attracted the greatest attention \([5]\). Therefore based on definitions of energy, in 2006, Gutman \([8]\) defined Laplacian energy for undirected graph \(G(n, m) \) as

\[
LE_g(G) = \sum_{i=1}^{n} |\mu_i - 2m/n|,
\]

and derive some lower bounds and upper bounds. He use axillary eigenvalues \(\gamma_i, i = 1, ..., n \) defined by \(\gamma_i = \mu_i - \frac{2m}{n} \) which satisfy

\[
\sum_{i=1}^{n} \gamma_i = 0 \quad \text{and} \quad \sum_{i=1}^{n} \gamma_i^2 = 2M \quad \text{where} \quad M = m + \frac{1}{2} \sum_{i=1}^{n} (d(i) - \frac{2m}{n})^2 \quad \text{and} \quad d(i) \text{ is the degree of a vertex.}
\]

The following bounds were obtained from the definition of \(LE_g(G) \).

Theorem 1.1 (Gutman[8]).

\[
LE_g(G) \leq \sqrt{2Mn} \quad (1)
\]

Theorem 1.2 (Gutman[8]). If \(G \) is a graph with one component then,

\[
LE_g(G) \leq \frac{2m}{n} + \sqrt{(n-1)(2M - (\frac{2m}{n})^2)} \quad (2)
\]

Theorem 1.3 (Gutman[8]).

\[
2\sqrt{M} \leq LE_g(G) \leq 2M \quad (3)
\]

Further in \([12]\), Total \(\pi \)-electron energy and Laplacian energy was compared. A similar problem for the usual Laplacian energy has been considered in \([10]\) for undirected graphs using second spectral moment. According to \([10]\) Laplacian energy was defined as \(LE_k(G) = \sum_{i=1}^{n} \mu_i^2 \) for eigenvalues \(\mu_i \) of undirected Laplacian matrix \(L = D - A \). Following results were obtained in \([10]\).
Theorem 1.4 (Kragujevac[10]). For any graph G on n vertices whose degree are $d(1), d(2), \ldots, d(n)$,

$$LE_k(G) = \sum_{i=1}^{n} d(i)(d(i) + 1)$$ (4)

Theorem 1.5 (Kragujevac[10]). For any connected graph G on $n \geq 2$ vertices,

$$LE_k(G) \geq 6n - 8.$$ (5)

Equality holds iff G is a path P_n on n vertices.

Theorem 1.6 (Kragujevac[10]). For any $\alpha > 4$, the class $p(\alpha)$ of all non-isomorphic connected graphs with the property $LE_k(G) \leq \alpha$ is finite.

By using eigenvalues of Laplacian matrix, Laplacian Estrada index was defined in [11] and derived some upper and lower boundaries. Further in 2009, Gutman found various relationships using incident energy [7]. In 2009, Adiga [1] introduce skew Laplacian energy for directed graphs as $SLE(G) = \sum_{i=1}^{n} \mu_i^2$, which is similar to [10]. Eigenvalues μ_i are the eigenvalues of skew Laplacian matrix $SL(G) = D - S(G)$ where $S(G)$ is the adjacency matrix with $s_{ij} = 1$ and $s_{ji} = -1$ whenever there is a arc from $i \rightarrow j$ and 0 otherwise. D is a diagonal matrix with $D(i, i) = d(i) = d^{\text{out}}(i) + d^{\text{in}}(i)$ where $d^{\text{out}}(i)$ is the outdegree and $d^{\text{in}}(i)$ is the indegree of vertex i. Later upper and lower bound for skew Laplacian energy $SLE(G) = \sum_{i} |\mu_i - \frac{2m}{n}|$ of simple directed graphs similar to equation (1), (2) and (3) are also derived as in the equation (7) in Theorem 1.7. Skew Laplacian eigenvalues of L satisfy the following relations.

$$\sum_{i=1}^{n} \mu_i = 2m$$ (6)

$$\sum_{i=1}^{n} \mu_i^2 = \sum_{i=1}^{n} d(i)(d(i) - 1)$$

Theorem 1.7 (Adiga[1]).

$$SLE(G) \leq \sqrt{2M_1n}$$

$$SLE(G) \leq k + \sqrt{(n-1)[2M_1 - k^2]}$$ (7)

$$2\sqrt{M} \leq SLE(G) \leq 2M_1$$
where \(M_1 = M + 2m = m + \frac{1}{2} \sum_{i=1}^{n} (d(i) - \frac{2m}{n})^2 \).

Most real world networks such as communication networks, web graphs etc. are directed graphs. Even though the energy concept originated in chemistry to find the energy of molecular structure, our objective is to investigate the applicability of the concept to find the structure of the web graphs. We enumerate graph structure in which Laplacian energy is less than some value. As an example, we consider the class \(P(\alpha) \) and find the structure of directed graphs belong to the class \(P(10) \). This paper is a small attempt to find the Laplacian energy and its behavior due to several criteria. We introduce notations and derive formulas for \(LE(G) \), the Laplacian energy of a directed graph \(G \) by using Kirchoff matrix as in the Section 2. Then we find some relations between undirected and directed graphs of \(LE \) in Section 3. Finally we analyze the MMO algorithm [3] and discuss how it is useful to find the directed graphs with minimum Laplacian energy in Section 4.

2. Laplacian energy of directed graphs

A graph \(G \), which has directed edge or arc is called a directed graph. Adjacency matrix \(A \) of \(G \) is the \(n \times n \) matrix \(A = (a_{ij}) \), where \(a_{ij} = 1 \) whenever \((v_i, v_j)\) is an directed edge and 0 otherwise. A directed graph having no multiple edges or self loops is called a simple directed graph. i.e., \(a_{ij} \in \{0,1\} \) and \(a_{ij} = 1 \Rightarrow a_{ji} = 0 \). A graph in which each edge is bidirected is called a symmetric directed graph. i.e., \(a_{ij} = 1 \Rightarrow a_{ji} = 1 \). Let \(D = \text{diag}(d^{\text{out}}(1), d^{\text{out}}(2), d^{\text{out}}(3), ..., d^{\text{out}}(n)) \) be diagonal matrix with outdegree of the vertices \(v_1, v_2, ..., v_n \). Then we call \(L(G) = D(G) - A(G) \), Laplacian matrix and its eigenvalues are denoted by \(\{\mu_1, \mu_2, ..., \mu_n\} \). Since \(L(G) \) is asymmetric matrix it does not give real eigenvalues always.

Definition 2.1. Let \(A(G) \) be the adjacency matrix of a directed graph \(G \). Then Laplacian energy of \(G \) is defined as \(LE(G) = \sum_{i=1}^{n} \mu_i^2 \) where \(n \) is the order of \(G \) and \(\mu_i, (i = 1, ..., n) \) are the eigenvalues of the Laplacian matrix. Let \(G_1 = (V(G_1), E(G_1)) \) and \(G_2 = (V(G_2), E(G_2)) \) be two finite, directed graphs with disjoint sets of vertices \(V(G_1) \) and \(V(G_2) \). Then the direct sum \(G = G_1 \oplus G_2 \) of these graphs is defined by \(V(G) = V(G_1) \cup V(G_2) \) and \(E(G) = E(G_1) \cup E(G_2) \).
Theorem 2.1. If G is a disconnected directed graph with components $G_1, G_2, ..., G_n$,

$$LE(G) = \sum_{i=1}^{n} LE(G_i). \quad (8)$$

Theorem 2.2. Let G be a directed graph with vertex degrees $d^{\text{out}}(1), d^{\text{out}}(2), ..., d^{\text{out}}(n)$. Then the following relations are hold.

If G is a simple directed graph then

$$LE(G) = \sum_{i=1}^{n} d^{\text{out}}(i)^2$$

If G is a symmetric directed graph then

$$LE(G) = \sum_{i=1}^{n} d^{\text{out}}(i)(d^{\text{out}}(i) + 1)$$

(Proof) Suppose G is a simple directed graph. Let D be a diagonal matrix with $D(i, i) = d^{\text{out}}(i)$ for $i \in V$. If $i \to j$ is an arc then $a_{ij} = 1$ and $a_{ji} = 0$. From Viète Rule, it is clear that $\sum \mu_i = \text{Trace}(L) = \sum_{i=1}^{n} d^{\text{out}}(i)$ and sum of the determinant of all the 2×2 principal sub matrices are $\sum_{i<j} \mu_i \mu_j$.

i.e.,

$$\sum_{i<j} \mu_i \mu_j = \sum_{i<j} \det \left(\begin{array}{cc} d^{\text{out}}(i) & -a_{ij} \\ 0 & d^{\text{out}}(j) \end{array} \right)$$

$$= \sum_{i<j} d^{\text{out}}(i)d^{\text{out}}(j)$$

For every $i < j$,

$$\sum_{i \neq j} \mu_i \mu_j = 2 \sum_{i<j} \mu_i \mu_j$$

$$= \sum_{i \neq j} d^{\text{out}}(i)d^{\text{out}}(j)$$

$$= \sum_{i \neq j} d^{\text{out}}(i)d^{\text{out}}(j)$$

5
Therefore

$$LE(G) = \sum_i \mu_i^2 = \left(\sum_i \mu_i \right)^2 \left(\sum_{i \neq j} \mu_i \mu_j \right)$$

$$= \left(\sum_i d^{out}(i) \right)^2 - \left(\sum_{i \neq j} d^{out}(i)d^{out}(j) \right)$$

$$= \sum_{i=1}^{n} (d^{out}(i))^2$$

(9)

If G is a symmetric directed graph then $d^{out}(i) = d^{in}(i) = d(i)$ for each node i. Hence Laplacian energy of symmetric directed graph is similar to the undirected graph as given by $LE(G_u) = \sum_{i=1}^{n} d(i)(d(i) + 1)$ in [10]. We can replace $d(i)$ with $d^{out}(i)$ and obtained the result.

Corollary 2.3. For any directed graph G, its Laplacian energy $LE(G)$ is an integer.

(Proof) Since degree of vertex is an integer we have integer values for $LE(G) = \sum_{i=1}^{n} (d^{out}(i))^2$ or $LE(G) = \sum_{i=1}^{n} d^{out}(i)(d^{out}(i) + 1)$ for $i = 1, 2, ..., n$.

Corollary 2.4. The Laplacian energy of a simple directed path P_n with $n \geq 2$ is $(n - 1)$.

(Proof) Since every directed path P_n has exactly $(n - 1)$ vertices with out-degree 1 and one vertex of degree 0, using theorem (2.2), we conclude that $LE(P_n) = (n - 1)$.

Corollary 2.5. The Laplacian energy of a simple directed cycle C_n with $n \geq 3$ is n.

(Proof) Since every vertex in C_n has out degree one, it follows from theorem (2.2) that $LE(G) = n$.

Corollary 2.6. For any connected directed graph on $n \geq 2$ vertices, we have

$$n - 1 \leq LE(G) \leq n^2(n - 1)$$

Moreover $LE(G) = n^2(n - 1)$ if and only if G is a complete directed graph K_n and $LE(G) = n - 1$ if and only if G is a directed path P_n on n vertices.
Let G be a connected directed graph with $n (\geq 2)$ vertices. Maximum degree of any vertex is less than or equal to $(n - 1)$. If G is a simple connected graph then $\text{LE}(G) = \sum_{i=1}^{n} d_{\text{out}}(i)^2 < \sum_{i=1}^{n} d_{\text{out}}(i)(d_{\text{out}}(i) + 1)$.

If G is a symmetric directed graph then $\text{LE}(G) = \sum_{i=1}^{n} d_{\text{out}}(i)(d_{\text{out}}(i) + 1) \leq n^2(n - 1)$. This implies that for any directed graph G, $\text{LE}(G) \leq n^2(n - 1)$. Since each vertex of a complete directed graph has exactly $n - 1$ degrees, it is clear that the maximum Laplacian energy of directed graphs with n vertices is achieved for the complete directed graph K_n.

We prove left side of inequality (10) by induction. As we know, to form a directed graph we need at least two nodes. Only connected graph which has two node is a simple or bi directed path. Since eigenvalues of $L(\mathbf{P}_2) = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ is 1 and 0 and $L(\mathbf{K}_2) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ is 2 and 0, the result is true for $n = 2$.

Suppose the result is true for any connected directed graph with $n-1$ vertices. i.e., $\text{LE}(G) \geq n - 2$. Then we need to prove the result for any arbitrary connected directed graph with n vertices. Let G be a connected directed graph with n vertices. Then, there is an induced subgraph $H \subset G$ on $n - 1$ vertices which is also connected. Let $V(H) = \{v_1, v_2, ..., v_{n-1}\}$, $V(G) = V(H)\cup\{v_n\}$ and $\text{LE}(H) \geq n-2$. It is easy to show that $\text{LE}(G) \geq \text{LE}(H) + 1$. So we have $\text{LE}(G) \geq n-1$. We can also prove that if G is a simple, connected directed graph with n vertices such that $\text{LE}(G) = n - 1$, then G must be a directed path P_n. Suppose $\text{LE}(G) = n - 1$. Let $n = 2$. Then $\text{LE}(G) = 1$.

Since $\text{LE}(G) = \sum_{i=1}^{2} (d_{\text{out}}(i))^2$, we have $d_{\text{out}}(1) + d_{\text{out}}(2) = 1$. This happened when we have a one vertex with outdegree 1. That is there exists one directed edge between two nodes. Therefore G should be a directed path.

3. Relations between undirected graphs and directed graphs

Every undirected graph can be converted to a directed graph by assigning directions. If each edge is replaced by two way directions then it is similar to the undirected graph.

Definition 3.1. For a given directed graph $G_d = (V_d, E_d)$, we define an undirected graph $U(G_d) = (U(V_d), U(E_d))$ by $U(V_d) = V_u$ and $U(E_d) = \{\{v_1, v_2\} \mid (v_1, v_2) \in E_d \text{ or } (v_2, v_1) \in E_d\}$. 7
Let $A(U(G)) = (a_{ij})$ be adjacency matrix of $U(G)$ and let $A'(G) = (a'_{ij})$ be adjacency matrix of G. Then

$$a_{ij} = \begin{cases} 1 & \text{if } a'_{ij} = 1 \text{ or } a'_{ji} = 1 \\ 0 & \text{otherwise} \end{cases}$$

Example 1. Figure 1 shows four directed graphs $G_d, G_{d_2}, G_{d_3}, G_{d_4}$ with $U(G_d) = G_u$. The Laplacian energies $LE(G_d)$ are different.

![Figure 1: Representation of undirected to directed graphs](image)

Theorem 3.1. For any directed graph G_d, $LE(G_d) \leq LE_k(U(G_d))$

(Proof) Let $G_d = (V_d, E_d)$ and $U(G_d) = (V_u, E_u)$. For any node $v \in V_d$, $d^{out}(v) \leq d(v)$.

$$LE_k(U(G_d)) = \sum_{i=1}^{n} d(i)(d(i) + 1)$$

$$= \sum_{i=1}^{n} d(i)^2 + \sum_{i=1}^{n} d(i)$$

$$\geq \sum_{i=1}^{n} (d^{out}(i))^2 + \sum_{i=1}^{n} d^{out}(i)$$

$$\geq LE(G_d)$$

Equality occur iff G_d is a symmetric directed graph.

8
Theorem 3.2. Let G be a directed graph and $G' = G - e$ be a directed graph obtained by deleting arc e. Then $LE(G') \leq LE(G)$.

(Proof) Let $G = (V_d, E_d)$ be a directed graph with $|V_d| = n$. Let $H = (V_h, E_h)$ be edge induced sub graph with $|V_h| = n_1$ and $|E_h| = e$ edges. Define G' as $H \oplus (n - n_1)K_1$. Then Laplacian $L(G)$ of G is the $L(G - E_h) + L(G')$. $L(G')$ is a square matrix with maximum eigenvalue 1 and all other 0. Then $\sum_{i=1}^{n} \mu_i(G) - \sum_{i=1}^{n} \mu_i(G') = 1$. This implies that $\sum_{i=1}^{n} \mu_i(G) > \sum_{i=1}^{n} \mu_i(G')$ and exists at least one $\mu_i(G') < \mu_i(G)$. Hence prove the theorem. \Box

Proposition 3.1. Let G_d be non-symmetric directed graph with $U(G_d) = G_u$. Then there exists a directed graph G'_d such that $U(G'_d) = G_u$ and $LE(G_d) < LE(G'_d)$.

(Proof) Let G_d be non-symmetric directed graph. Then there exists $\{v_i, v_j\} \in E(G_u)$ and $\{v_i, v_j\} \notin E(G_d)$ or $\{v_j, v_i\} \notin E(G_d)$. Suppose $\{v_i, v_j\} \notin E(G_d)$. Let G'_d be a connected directed graph with $V(G'_d) = V(G_d)$, $E(G'_d) = E(G_d) \cup \{v_i, v_j\}$. Then $\sigma(G'_d) = G_u$ and by theorem 3.2, $LE(G'_d) > LE(G_d)$. By adding arcs for each node we can transform given non-symmetric graph to symmetric graph, which is identical to the undirected graph. \Box

Proposition 3.2. Let G_d be a non-simple directed graph with $U(G_d) = G_u$. Then there exists a directed graph G'_d such that $U(G'_d) = G_u$ and $LE(G_d) > LE(G'_d)$.

(Proof) Suppose G_d be a non-simple directed graph. Then there exists $\{v_i, v_j\} \in E(G_u)$ and $\{v_i, v_j\} \in E(G_d)$ and $\{v_j, v_i\} \in E(G_d)$. Suppose $\{v_i, v_j\} \in E(G_d)$. Let G'_d be a connected directed graph with $V(G'_d) = V(G_d)$ and $E(G'_d) = E(G_d) - \{v_i, v_j\}$. Then $U(G'_d) = G_u$ and by Theorem 3.2, $LE(G'_d) < LE(G_d)$. By deleting arcs from each node we can transform given non-simple graph to simple graph. \Box

Theorem 3.3. Let $P(\alpha) = \{G \mid LE(G) \leq \alpha, \ G \text{ is a simple connected directed graph}\}$. For any $\alpha \geq 1$, the class $P(\alpha)$ of all non-isomorphic connected directed graphs with the property $LE(G) \leq \alpha$ is finite.

(Proof) Let G be a directed graph with n vertices and m arcs such that $LE(G) \leq \alpha$. By Corollary 2.6, $n - 1 \leq LE(G) \leq \alpha$. Hence we obtain $n - 1 \leq \alpha$. Since n is finite, class $P(\alpha)$ is also finite. \Box
Corollary 3.4. The class $P(10)$ contains exactly 47 directed graphs. More exactly 29 directed graphs with $n \leq 10$, 8 directed cycles with $n \leq 10$ and 10 directed paths with $n \leq 11$. Some of the graphs are listed in Figure 2.

(Proof) Let $\alpha = 10$. Every simple connected directed graph with n vertices has at least $(n-1)$ arcs. Notice that for $n = 12$, $LE(G) \geq (n-1) = 11 > 10$. For $n = 11$, $LE(G) \geq 10$. Therefore all directed graphs from the class $P(10)$ have at most 11 vertices. Since $LE(P_n) = n-1$ it has 10 directed path P_n with $n \leq 11$ and since $LE(C_n) = n$ it has 8 directed cycle with $n \leq 10$.

Theorem 3.5. Let $G = (V_d, E_d)$ be a simple connected directed graph with $|V_d| = n$ and $|E_d| = m$. If $\Delta = \max\{d^{out}(v) \mid v \in V_d\}$ and $\delta = \min\{d^{out}(v) \mid v \in V_d\}$ then

$$\frac{m^2}{n} \leq LE(G) \leq m(\Delta + \delta) - n\delta\Delta.$$

(Proof) By Cauchy Schwarz inequality, $LE(G) = \sum_{i=1}^{n} \mu_i^2 = \sum_{i=1}^{n} (d^{out}(i))^2 \geq \frac{1}{n} \left(\sum_{i=1}^{n} d^{out}(i)\right)^2 = \frac{m^2}{n}$. Let’s consider the $(d^{out}(i) - \delta)(d^{out}(i) - \Delta)$. For all i, $(d^{out}(i) - \delta) \geq 0$ and $(d^{out}(i) - \Delta) \leq 0$. Therefore $(d^{out}(i) - \Delta)(d^{out}(i) - \delta) \leq 0$, $\forall i \in V_d$. Further $\sum_i (d^{out}(i) - \Delta)(d^{out}(i) - \delta) = \sum_i (d^{out}(i))^2 - (\Delta + \delta)\sum_i d^{out}(i) + n\delta\Delta \leq 0$. This shows that $\sum_i (d^{out}(i))^2 \leq m(\Delta + \delta) - n\delta\Delta \leq 0$. Hence $LE(G) \leq m(\Delta + \delta) - n\delta\Delta$.

Remark: If $\Delta = \delta$ then $m = \sum_{i=1}^{n} d^{out}(i) = n\Delta$ and $m(\Delta + \delta) - n\delta\Delta = 2n \Delta^2 - n\Delta^2 = n\Delta^2 = \frac{m^2}{n}$.

4. Minimizing maximum outdegree algorithms

In this section we describe the relationship between minimum Laplacian energy of directed graphs and Minimizing maximum out degree algorithms called MMO algorithms [3].
Figure 2: Directed graphs with nodes < 10
Definition 4.1. Let G_u be an undirected graph. The optimal directed Laplacian energy $LE_{\text{opt}}(G_u)$ of G_u is defined by

$$LE_{\text{opt}}(G_u) = \min \{ LE(G_d) \mid G_d \text{ is a directed graph and } U(G_d) = G_u \}.$$

Definition 4.2. For a directed graph $G_d = (V_d, E_d)$, the maximum out-degree $\Delta(G_d)$ of G_d is defined by

$$\Delta(G_d) = \max \{ d^{\text{out}}(v) \mid v \in V_d \}.$$

Definition 4.3. Let G_u be an undirected graph. The optimal maximum out-degree $\Delta_{\text{opt}}(G_u)$ of G_u is defined by

$$\Delta_{\text{opt}}(G_u) = \min \{ \Delta(G_d) \mid G_d \text{ is a directed graph and } U(G_d) = G_u \}.$$

Definition 4.4. Let $G_d = (V_d, E_d)$ be a directed graph. We denote $v \rightarrow w$ if $(v, w) \in E_d$. We also denote $v \Rightarrow w$ if there exists $v_1, v_2, ..., v_k \in V_d, (k \geq 1)$ such that $v = v_1, v_1 \rightarrow v_2, ..., v_{k-1} \rightarrow v_k$ and $v_k = w$.

Proposition 4.1. Let $G_u = (V_u, E_u)$ be an undirected graph and $G_d = (V_d, E_d)$ be a directed graph satisfying $U(G_d) = G_u$. If $\Delta(G_d) = p$ and $\{ d^{\text{out}}(v) \mid v \in V_d \} = \{ p, p-1 \}$ then $LE(G_d) = LE_{\text{opt}}(G_u)$.

(Proof) Let $k = |\{ v \in V_d \mid d^{\text{out}}(v) = p \}|$ and $l = |\{ v \in V_d \mid d^{\text{out}}(v) = p-1 \}|$. Since $\sum \{ d^{\text{out}}(v) \mid v \in V_d \} = |E_u|$, we have $pk + (p-1)l = |E_u|$. Since $k + l = |V_u|$, k and l is uniquely determined. $|E_u| = kp + l(p-1) = |V_u|p + (k - |V_u|)$ and $|V_u|p = |E_u| + |V_u| - k$. Hence $p = \frac{|E_u|}{|V_u|} + 1 - \frac{k}{|V_u|}$. Since $1 \leq k \leq |V_u|$ then $0 \leq 1 - \frac{k}{|V_u|} < 1$. So we have $p = \lfloor \frac{|E_u|}{|V_u|} \rfloor$.

Let $h(x_1, x_2, ..., x_n, \lambda) = \sum_{i=1}^{n} x_i^2 + 2\lambda(\sum_{i=1}^{n} x_i - |E_u|)$. Since $\frac{\partial h}{\partial x_i} = 2x_i + 2\lambda = 0$ and $\frac{\partial h}{\partial \lambda} = \sum_{i=1}^{n} x_i - |E_u| = 0$, the function h is minimum at $x_i = -\lambda, (i = 1, ..., n)$ and $\sum_{i=1}^{n} x_i = |E_u|$. Since $\sum_{i=1}^{n} x_i = -|V_u|\lambda = |E_u|$, we have $\lambda = -\frac{|E_u|}{|V_u|}$ and $x_i = \frac{|E_u|}{|V_u|}, (i = 1, ..., n)$. If all x_i’s are integer, the function h have minimum value with $x_i \in \{ \lfloor \frac{|E_u|}{|V_u|} \rfloor, \lfloor \frac{|E_u|}{|V_u|} \rfloor - 1 \}$ for $(i = 1, ..., n)$. We consider $x_i = d^{\text{out}}(v_i)$. Then $h(x_1, x_2, ..., x_n, \lambda) = LE(G_d)$. So $LE(G_d) = kp^2 + l(p-1)^2$ gives the optimal solution. \qed

Finding the orientation of simple graph by minimizing maximum out degree of a node is studied in literature [13, 3] and defined as MMO (Minimizing maximum out degree) algorithms. In order to minimize the maximum out degree and find a optimal solution to MMO problems, [3] use simple algorithm called reverse algorithm as in Table 4.
An undirected graph $G_u = (V_u, E_u)$

Oriented graph $\text{MNO}(G_u) = G_d = (V_d, E_d)$

Table 1: MMO Algorithm

Step 1:	Set $E_d = \emptyset$
Step 2:	Find arbitrary orientation and update E_d
Step 3:	Compute out degree $d^\text{out}(v)$ for each $v \in V_d$. Let u be $\max \{ d^\text{out}(v) \mid v \in V_d \}$
Step 4:	Find a directed path $P = u \rightarrow v_1 \rightarrow ... \rightarrow v_k$ of length $k (k \geq 1)$ which satisfy $d^\text{out}(v_i) \leq d^\text{out}(u), \forall 1 \leq i \leq k - 1$ and $d^\text{out}(v_k) \leq d^\text{out}(u) - 2$

If such P exists then set $E_d = E_d \setminus \{ P \cup \tilde{P} \}$, where $\tilde{P} = v_k \rightarrow ... \rightarrow v_1 \rightarrow u$ and goto Step 2. Otherwise halt.

Reverse path cause to reduce the maximum outdegree by one and increase the outdegree of terminal vertex by one. It is proved in [3] that if $G_d = \text{MNO}(G_u)$ then $\Delta_{\text{opt}}(G_u) = \Delta(G_d)$.

Example 2. In Figure 3, we demonstrate two directed graphs G_{d_1} and G_{d_2} with $U(G_{d_1}) = U(G_{d_2}) = G_u$. The maximum outdegree of G_{d_1} and G_{d_2} are same. But $\text{LE}(G_{d_1}) \neq \text{LE}(G_{d_2})$. In Figure 4 we demonstrate four directed graphs $G_{d_1}, G_{d_2}, G_{d_3}, G_{d_4}$ with $U(G_{d_i}) = G_u$ and $\text{LE}(G_{d_i}) = \text{LE}_{\text{opt}}(G_u)$, $(i = 1, 2, 3, 4)$. We can see $|d^\text{out}(v) \mid v \in V_{d_1} = \{1, 2\} and |\{v \in V_{d_1} \mid d^\text{out}(v) = 1\}| = |\{v \in V_{d_1} \mid d^\text{out}(v) = 1\}|$ and $|\{v \in V_{d_1} \mid d^\text{out}(v) = 2\}| = |\{v \in V_{d_1} \mid d^\text{out}(v) = 2\}| for (i, j = 1, 2, 3, 4).

Proposition 4.2. Let $G_u = (V_u, E_u)$ be undirected graph and $G_d = (V_d, E_d) = \text{MNO}(G_u)$. Let $v_0 \in V_d$ be a vertex with $d^\text{out}(v_0) = \Delta(G_d)$. Define $V' = \{ w \in V_d \mid v_0 \Rightarrow w \}$. $G'_u = (V', E'_u)$ be the induced undirected graph where $E'_u = \{ \{u, v\} \in E_u \mid u, v \in V' \}$ and $G'_d = (V', E'_d)$ be the directed graph where $E'_d = \{ \{(u, v) \in E_d \mid u, v \in V' \}$. Then the following relations are hold.

1. $d^\text{out}(v_0) \geq d^\text{out}(v') \geq d^\text{out}(v_0) - 1$ for $v' \in V'$.
2. $\text{LE}(G'_d) = \text{LE}_{\text{opt}}(G'_u)$
Figure 3: Equal maximum degree and different Laplacian energy

(Proof)

1. Let \(v' \in V' \). Then we have a path \(P = v_0 \rightarrow \ldots \rightarrow v' \) from \(v_0 \) to \(v' \). Since \(d^{\text{out}}(v_0) = \Delta(G_d) \), we have \(d^{\text{out}}(v') \leq d^{\text{out}}(v_0) \). Further \(G_d = \text{MMO}(G_u) \) imply that \(d^{\text{out}}(v') > d^{\text{out}}(v_0) - 2 \). Therefore \(d^{\text{out}}(v') \geq d^{\text{out}}(v_0) - 1 \).

2. From (1) we have \(\{d^{\text{out}}(v) \mid v \in V'\} = \{d^{\text{out}}(v_0), d^{\text{out}}(v_0) - 1\} \).

By Proposition 4.1, we have \(\text{LE}(G'_d) = \text{LE}_{\text{opt}}(G'_u) \).

Theorem 4.1. Let \(G_u = (V_u, E_u) \) be an undirected graph and \(G_d = (V_d, E_d) = \text{MMO}(G_u) \). Let \(p = \Delta(G_d), V_p = \{v \in V_d \mid d^{\text{out}}(v) = p\} \) and \(V_1 = \{w \in V_d \mid v_p \in V_p, v_p \Rightarrow w\} \). If \(V_u = V_1 \) then \(\text{LE}(G_d) = \text{LE}_{\text{opt}}(G_u) \).

(Proof) Since \(G_d = \text{MMO}(G_u) \) then \(\{d^{\text{out}}(v) \mid v \in V_1\} = \{p, p - 1\} \). If \(V_u = V_1 \) then we have \(\text{LE}(G_d) = \text{LE}_{\text{opt}}(G_u) \) by Proposition 4.1.

Example 3. In figure 5(a) \(\text{MMO}(G_u) = (V_d, E_d) \) and \(\{d^{\text{out}}(v) \mid v \in V_d\} = \{3, 2, 1\}. \) \(p = \Delta(G_d) = 3, V_p = \{9, 11, 12\}, V_1 = \{9, 10, 11, 12, 13, 14\} \). So we cannot apply Theorem 4.1. In Figure 5(b) \(\text{MMO}(G_u) = (V_d, E_d) \) and \(\{d^{\text{out}}(v) \mid v \in V_d\} = \{2, 1\} \). We can see \(p = \Delta(G_d) = 2, V_p = \{1, 2, 3, 4, 5, 6\} \) and \(V_1 = \{1, 2, 3, 4, 5, 6, 7, 8\} \). Then we have \(\text{LE}(\text{MMO}(G_u)) = \text{LE}_{\text{opt}}(G_u) \) from the Theorem 4.1.
5. Conclusion

We build relations on Laplacian energy of directed graphs. Then we enumerated the structure of the graphs whose Laplacian energy is less than some α value. Further we considered relationship between MMO algorithms and Laplacian energy. It is remained for the future to further analysis whether MMO algorithms always gives the optimal solution for minimum Laplacian energy.

6. Acknowledgment

The authors thank Dr. Tetsuji Taniguchi for his valuable suggestions and discussions. This work has been partially supported by Kyushu University.
Figure 5: Graphs consists of optimal Laplacian Energy

Global COE Program ”Education-and-Research Hub for Mathematics-for-Industry”.

References

List of MI Preprint Series, Kyushu University
The Global COE Program
Math-for-Industry Education & Research Hub

MI

MI2008-1 Takahiro ITO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Abstract collision systems simulated by cellular automata

MI2008-2 Eiji ONODERA
The initial value problem for a third-order dispersive flow into compact almost
Hermitian manifolds

MI2008-3 Hiroaki KIDO
On isosceles sets in the 4-dimensional Euclidean space

MI2008-4 Hiroyumi NOTSU
Numerical computations of cavity flow problems by a pressure stabilized characteristic-
curve finite element scheme

MI2008-5 Yoshiyasu OZEKI
Torsion points of abelian varieties with values in infinite extensions over a p-
adic field

MI2008-6 Yoshiyuki TOMIYAMA
Lifting Galois representations over arbitrary number fields

MI2008-7 Takehiro HIROTSU & Setsuo TANIGUCHI
The random walk model revisited

MI2008-8 Silvia GANDY, Masaaki KANNO, Hirokazu ANAI & Kazuhiro YOKOYAMA
Optimizing a particular real root of a polynomial by a special cylindrical algebraic decomposition

MI2008-9 Kazufumi KIMOTO, Sho MATSUMOTO & Masato WAKAYAMA
Alpha-determinant cyclic modules and Jacobi polynomials
MI2008-10 Sangyeol LEE & Hiroki MASUDA
 Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Observed Univariate SDE

MI2008-11 Hiroyuki CHIHARA & Eiji ONODERA
 A third order dispersive flow for closed curves into almost Hermitian manifolds

MI2008-12 Takehiko KINOSHITA, Kouji HASHIMOTO and Mitsuhiro T. NAKAO
 On the L^2 a priori error estimates to the finite element solution of elliptic problems with singular adjoint operator

MI2008-13 Jacques FARAUT and Masato WAKAYAMA
 Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek polynomials

MI2008-14 Takashi NAKAMURA
 Riemann zeta-values, Euler polynomials and the best constant of Sobolev inequality

MI2008-15 Takashi NAKAMURA
 Some topics related to Hurwitz-Lerch zeta functions

MI2009-1 Yasuhide FUKUMOTO
 Global time evolution of viscous vortex rings

MI2009-2 Hidetoshi MATSUI & Sadanori KONISHI
 Regularized functional regression modeling for functional response and predictors

MI2009-3 Hidetoshi MATSUI & Sadanori KONISHI
 Variable selection for functional regression model via the L_1 regularization

MI2009-4 Shuichi KAWANO & Sadanori KONISHI
 Nonlinear logistic discrimination via regularized Gaussian basis expansions

MI2009-5 Toshiro HIRANOUCHI & Yuichiro TAGUCHI
 Flat modules and Groebner bases over truncated discrete valuation rings
MI2009-6 Kenji KAJIWARA & Yasuhiro OHTA
Bilinearization and Casorati determinant solutions to non-autonomous 1+1
dimensional discrete soliton equations

MI2009-7 Yoshiyuki KAGEI
Asymptotic behavior of solutions of the compressible Navier-Stokes equation
around the plane Couette flow

MI2009-8 Shohei TATEISHI, Hidetoshi MATSUI & Sadanori KONISHI
Nonlinear regression modeling via the lasso-type regularization

MI2009-9 Takeshi TAKAISHI & Masato KIMURA
Phase field model for mode III crack growth in two dimensional elasticity

MI2009-10 Shingo SAITO
Generalisation of Mack’s formula for claims reserving with arbitrary exponents
for the variance assumption

MI2009-11 Kenji KAJIWARA, Masanobu KANEKO, Atsushi NOBE & Teruhisa TSUDA
Ultradiscretization of a solvable two-dimensional chaotic map associated with
the Hesse cubic curve

MI2009-12 Tetsu MASUDA
Hypergeometric Φ-functions of the q-Painlevé system of type $E_8^{(1)}$

MI2009-13 Hidenao IWANE, Hitoshi YANAMI, Hirokazu ANAI & Kazuhiro YOKOYAMA
A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic De-
composition for Quantifier Elimination

MI2009-14 Yasunori MAEKAWA
On Gaussian decay estimates of solutions to some linear elliptic equations and
its applications

MI2009-15 Yuya ISHIHARA & Yoshiyuki KAGEI
Large time behavior of the semigroup on L^p spaces associated with the lin-
earized compressible Navier-Stokes equation in a cylindrical domain
MI2009-16 Chikashi ARITA, Atsuo KUNIBA, Kazumitsu SAKAI & Tsuyoshi SAWABE
Spectrum in multi-species asymmetric simple exclusion process on a ring

MI2009-17 Masato WAKAYAMA & Keitaro YAMAMOTO
Non-linear algebraic differential equations satisfied by certain family of elliptic functions

MI2009-18 Me Me NAING & Yasuhide FUKUMOTO
Local Instability of an Elliptical Flow Subjected to a Coriolis Force

MI2009-19 Mitsunori KAYANO & Sadanori KONISHI
Sparse functional principal component analysis via regularized basis expansions and its application

MI2009-20 Shuichi KAWANO & Sadanori KONISHI
Semi-supervised logistic discrimination via regularized Gaussian basis expansions

MI2009-21 Hiroshi YOSHIDA, Yoshihiro MIWA & Masanobu KANEKO
Elliptic curves and Fibonacci numbers arising from Lindenmayer system with symbolic computations

MI2009-22 Eiji ONODERA
A remark on the global existence of a third order dispersive flow into locally Hermitian symmetric spaces

MI2009-23 Stjepan LUGOMER & Yasuhide FUKUMOTO
Generation of ribbons, helicoids and complex scherk surface in laser-matter Interactions

MI2009-24 Yu KAWAKAMI
Recent progress in value distribution of the hyperbolic Gauss map

MI2009-25 Takehiko KINOSHITA & Mitsuhiro T. NAKAO
On very accurate enclosure of the optimal constant in the a priori error estimates for H^2_0-projection
MI2009-26 Manabu YOSHIDA
 Ramification of local fields and Fontaine’s property (Pm)

MI2009-27 Yu KAWAKAMI
 Value distribution of the hyperbolic Gauss maps for flat fronts in hyperbolic
 three-space

MI2009-28 Masahisa TABATA
 Numerical simulation of fluid movement in an hourglass by an energy-stable
 finite element scheme

MI2009-29 Yoshiyuki KAGEI & Yasunori MAEKAWA
 Asymptotic behaviors of solutions to evolution equations in the presence of
 translation and scaling invariance

MI2009-30 Yoshiyuki KAGEI & Yasunori MAEKAWA
 On asymptotic behaviors of solutions to parabolic systems modelling chemotaxis

MI2009-31 Masato WAKAYAMA & Yoshinori YAMASAKI
 Hecke’s zeros and higher depth determinants

MI2009-32 Olivier PIRONNEAU & Masahisa TABATA
 Stability and convergence of a Galerkin-characteristics finite element scheme
 of lumped mass type

MI2009-33 Chikashi ARITA
 Queueing process with excluded-volume effect

MI2009-34 Kenji KAJIWARA, Nobutaka NAKAZONO & Teruhisa TSUDA
 Projective reduction of the discrete Painlevé system of type$(A_2 + A_1)^{(1)}$

MI2009-35 Yosuke MIZUYAMA, Takamasa SHINDE, Masahisa TABATA & Daisuke TAGAMI
 Finite element computation for scattering problems of micro-hologram using
 DtN map
MI2009-36 Reiichiro KAWAI & Hiroki MASUDA
Exact simulation of finite variation tempered stable Ornstein-Uhlenbeck pro-
cesses

MI2009-37 Hiroki MASUDA
On statistical aspects in calibrating a geometric skewed stable asset price
model

MI2010-1 Hiroki MASUDA
Approximate self-weighted LAD estimation of discretely observed ergodic Ornstein-
Uhlenbeck processes

MI2010-2 Reiichiro KAWAI & Hiroki MASUDA
Infinite variation tempered stable Ornstein-Uhlenbeck processes with discrete
observations

MI2010-3 Kei HIROSE, Shuichi KAWANO, Daisuke MIIKE & Sadanori KONISHI
Hyper-parameter selection in Bayesian structural equation models

MI2010-4 Nobuyuki IKEDA & Setsuo TANIGUCHI
The Itô-Nisio theorem, quadratic Wiener functionals, and 1-solitons

MI2010-5 Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling and detecting change point via the relevance
vector machine

MI2010-6 Shuichi KAWANO, Toshihiro MISUMI & Sadanori KONISHI
Semi-supervised logistic discrimination via graph-based regularization

MI2010-7 Teruhisa TSUDA
UC hierarchy and monodromy preserving deformation

MI2010-8 Takahiro ITO
Abstract collision systems on groups

MI2010-9 Hiroshi YOSHIDA, Kinji KIMURA, Naoki YOSHIDA, Junko TANAKA &
Yoshihiro MIWA
An algebraic approach to underdetermined experiments
MI2010-10 Kei HIROSE & Sadanori KONISHI
Variable selection via the grouped weighted lasso for factor analysis models

MI2010-11 Katsusuke NABESHIMA & Hiroshi YOSHIDA
Derivation of specific conditions with Comprehensive Groebner Systems

MI2010-12 Yoshiyuki KAGEI, Yu NAGAFUCHI & Takeshi SUDOU
Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Poiseuille type flow

MI2010-13 Reiichiro KAWAI & Hiroki MASUDA
On simulation of tempered stable random variates

MI2010-14 Yoshiyasu OZEKI
Non-existence of certain Galois representations with a uniform tame inertia weight

MI2010-15 Me Me NAING & Yasuhide FUKUMOTO
Local Instability of a Rotating Flow Driven by Precession of Arbitrary Frequency

MI2010-16 Yu KAWAKAMI & Daisuke NAKAJO
The value distribution of the Gauss map of improper affine spheres

MI2010-17 Kazunori YASUTAKE
On the classification of rank 2 almost Fano bundles on projective space

MI2010-18 Toshimitsu TAKAESU
Scaling limits for the system of semi-relativistic particles coupled to a scalar bose field

MI2010-19 Reiichiro KAWAI & Hiroki MASUDA
Local asymptotic normality for normal inverse Gaussian Lévy processes with high-frequency sampling

MI2010-20 Yasuhide FUKUMOTO, Makoto HIROTA & Youichi MIE
Lagrangian approach to weakly nonlinear stability of an elliptical flow
MI2010-21 Hiroki MASUDA
Approximate quadratic estimating function for discretely observed Lévy driven SDEs with application to a noise normality test

MI2010-22 Toshimitsu TAKAESU
A Generalized Scaling Limit and its Application to the Semi-Relativistic Particles System Coupled to a Bose Field with Removing Ultraviolet Cutoffs

MI2010-23 Takahiro ITO, Mitsuhiko FUJIO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Composition, union and division of cellular automata on groups

MI2010-24 Toshimitsu TAKAESU
A Hardy’s Uncertainty Principle Lemma in Weak Commutation Relations of Heisenberg-Lie Algebra

MI2010-25 Toshimitsu TAKAESU
On the Essential Self-Adjointness of Anti-Commutative Operators

MI2010-26 Reiichiro KAWAI & Hiroki MASUDA
On the local asymptotic behavior of the likelihood function for Meixner Lévy processes under high-frequency sampling

MI2010-27 Chikashi ARITA & Daichi YANAGISAWA
Exclusive Queueing Process with Discrete Time

MI2010-28 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA & Yasuhiro OHTA
Motion and Bäcklund transformations of discrete plane curves

MI2010-29 Takanori YASUDA, Masaya YASUDA, Takeshi SHIMOYAMA & Jun KOGURE
On the Number of the Pairing-friendly Curves

MI2010-30 Chikashi ARITA & Kohei MOTEGI
Spin-spin correlation functions of the q-VBS state of an integer spin model

MI2010-31 Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling and spike detection via Gaussian basis expansions
MI2010-32 Nobutaka NAKAZONO
Hypergeometric τ functions of the q-Painlevé systems of type $(A_2 + A_1)^{(1)}$

MI2010-33 Yoshiyuki KAGEI
Global existence of solutions to the compressible Navier-Stokes equation around parallel flows

MI2010-34 Nobushige KUROKAWA, Masato WAKAYAMA & Yoshinori YAMASAKI
Milnor-Selberg zeta functions and zeta regularizations

MI2010-35 Perera KISSANI & Yoshihiro MIZOGUCHI
Laplacian energy of directed graphs and minimizing maximum outdegree algorithms