Spectral properties of the semigroup for the linearized compressible Navier-Stokes equation around a parallel flow in a cylindrical domain

Reika Aoyama
& Yoshiyuki Kagei

MI 2015-2

(Received March 31, 2015)
Spectral properties of the semigroup for the linearized compressible Navier-Stokes equation around a parallel flow in a cylindrical domain

Reika Aoyama1 and Yoshiyuki Kagei1

1 Graduate School of Mathematics, Kyushu University, Nishi-ku, Motooka 744, Fukuoka, 819-0395, JAPAN

2 Faculty of Mathematics, Kyushu University, Nishi-ku, Motooka 744, Fukuoka 819-0395, Japan

Abstract: This paper is concerned with the stability of a parallel flow of the compressible Navier-Stokes equation in a cylindrical domain. The spectrum of the linearized operator is analyzed for the purpose of the study of the nonlinear stability. It is shown that if the Reynolds and Mach numbers are sufficiently small, then the linearized semigroup is decomposed into two parts; one behaves like a solution of a one dimensional heat equation as time goes to infinity and the other one decays exponentially. Some estimates related to the spectral projections are established, which will also be useful for the study of the nonlinear problem.

Keywords: Compressible Navier-Stokes equation, parallel flow, cylindrical domain, linearized semigroup, asymptotic behavior

1 Introduction

We consider the initial boundary value problem for the equations for a barotropic motion of viscous compressible fluid

\[
\begin{align*}
\partial_t \rho + \text{div}(\rho v) &= 0, \quad (1.1) \\
\rho (\partial_t v + v \cdot \nabla v) - \mu \Delta v - (\mu + \mu') \nabla \text{div} v + \nabla p &= \rho g, \quad (1.2) \\
v|_{\partial D} &= 0, \quad (1.3) \\
(\rho, v)|_{t=0} &= (\rho_0, v_0) \quad (1.4)
\end{align*}
\]
in a cylindrical domain $\Omega = D \times \mathbb{R}$:

$$\Omega = \{ x = (x', x_3); x' = (x_1, x_2) \in D, x_3 \in \mathbb{R} \}.$$

Here D is a bounded and connected domain in \mathbb{R}^2 with a smooth boundary ∂D;

$$\rho = \rho(x, t) \text{ and } v = (v^1(x, t), v^2(x, t), v^3(x, t))$$

denote the unknown density and velocity at time $t \geq 0$ and position $x \in \Omega$, respectively; $P(\rho)$ is the pressure that is a smooth function of ρ and satisfies

$$P'(\rho_*) > 0$$

for a given positive constant ρ_*; μ and μ' are the viscosity coefficients that satisfy

$$\mu > 0, \quad \frac{2}{3}\mu + \mu' \geq 0;$$

and g is an external force of the form $g = T(g^1(x'), g^2(x'), g^3(x'))$ with g^1 and g^2 satisfying

$$(g^1(x'), g^2(x')) = (\partial_{x_1}\Phi(x'), \partial_{x_2}\Phi(x')),$$

where Φ and g^3 are given smooth functions of x'. Here and in what follows T: stands for the transposition.

It is known that problem (1.1)-(1.3) has the stationary solution $u_s = T(p_s(x'), v_s(x'))$; p_s is determined by

$$\left\{ \begin{array}{l}
\text{Const.} - \Phi(x') = \int_{\rho_*}^{\rho_s} \frac{\nu(\eta)}{\eta} d\eta, \\
\int_D p_s - \rho_* dx' = 0;
\end{array} \right.$$

and v_s takes the form

$$v_s = T(0, 0, v_3^s(x')),$$

where $v_3^s(x')$ is the solution of

$$\left\{ \begin{array}{l}
-\mu\Delta' v_3^s = p_s g^3, \\
v_3^s |_{\partial D} = 0.
\end{array} \right.$$

Here $\Delta' = \partial_{x_1}^2 + \partial_{x_2}^2$. The stationary solution u_s represents a parallel flow in Ω.

We are interested in the large time behavior of solutions to problem (1.1)-(1.4) when the initial value $(\rho, v) \big|_{t=0} = (\rho_0, v_0)$ is sufficiently close to the stationary solution $u_s = T(p_s, v_s)$. In [1] the decay estimates of the linearized semigroup for (1.1) - (1.4) were established. In this paper we study the spectral properties of the linearized semigroup in more detail, which play an important role in the analysis of the nonlinear problem.

As for the asymptotic behavior of multidimensional compressible Navier-Stokes equations on unbounded domains, a lot of results have been obtained. See, e.g., [5, 6, 11, 13, 14, 15, 16, 17, 19] and references therein.

For the stability of parallel flow, detailed descriptions of large time behavior of disturbances have been obtained in the case of an n dimensional infinite layer $\mathbb{R}^{n-1} \times (0, 1) = \{ x = (x_h, x_n); x_h = (x_1, \cdots, x_{n-1}) \in \mathbb{R}^{n-1}, 0 < x_n < 1 \}$. It
was proved in [10] that asymptotic behavior of solutions of the linearized problem is described by an $n-1$ dimensional linear heat equation, if Reynolds and Mach numbers are sufficiently small. The nonlinear problem was then studied in [9]; it was shown that if Reynolds and Mach numbers are sufficiently small, then the parallel flow is stable under sufficiently small initial disturbances in some Sobolev space. In the case of $n \geq 3$, the disturbance $u(t)$ behaves like a solution of an $n-1$ dimensional linear heat equation as $t \to \infty$, while, in the case of $n = 2$, $u(t)$ behaves like a solution of a one dimensional viscous Burgers equation. See also [2, 3, 4] for the stability of time periodic parallel flow.

As for the case of the cylindrical domain Ω, Iooss and Padula [7] studied the linearized stability of a stationary parallel flow under the periodic boundary condition in x_3 with vanishing average condition on the basic period cell for the density-disturbance and proved that if the Reynolds number is suitably small, then the linearized semigroup decays exponentially as $t \to \infty$.

On the other hand, stability under the non-periodic but local disturbances (i.e., belonging to some L^2 Sobolev space on Ω) was studied in [12] in the case of the motionless state $\mathbf{e}u_s = T(\mathbf{e} \varphi, w)$. It was shown that the disturbance decays in $L^2(\Omega)$ in the order $t^{-\frac{1}{4}}$ and its asymptotic leading part is given by a solution of a one dimensional linear heat equation. (See also [8] for the analysis in $L^p(\Omega)$.)

The linearized stability of parallel flow under non-periodic local disturbances on Ω was then studied in [1]. It was shown that the linearized semigroup e^{-tL} satisfies the decay estimate

$$\| \partial_t^k \partial_x^l \mathbf{e} \partial_x e^{-tL} u_0 \|_{L^2(\Omega)} \leq C \left\{ (1 + t)^{-\frac{1}{4}} \left\| u_0 \right\|_{L^1(\mathbf{R}:L^2(D))} + e^{-dt} \left\| u_0 \right\|_{H^1(\Omega)} \right\}$$

for $t \geq 0$ and $0 \leq k + l \leq 1$, provided that the Reynolds and Mach numbers are sufficiently small and that \mathbf{p}_s is sufficiently close to ρ_s. In view of the argument in [9], estimate (1.5) is not enough to show the global in time solvability of the nonlinear problem. The purpose of this paper is to derive more detailed spectral information of the linearized operator which will be available for the nonlinear analysis.

The main results of this paper are summarized as follows. We consider the linearized problem whose non-dimensional form is written as

$$\partial_t u + Lu = 0, \quad u \mid_{t=0} = u_0.$$ (1.6)

Here $u = \mathbb{T}(\phi, w)$ is the unknown; and $u_0 = \mathbb{T}(\phi_0, w_0)$ is a given initial value; and L denotes the linearized operator on $L^2(\Omega)$ defined by

$$L = \left(\begin{array}{c} \nabla \left(\mathbb{P}(\rho_s) \cdot \nabla \right) \\
- \frac{\nu}{\rho_s} \Delta I_3 - \frac{\nu + \nu'}{\rho_s} \nabla \mathrm{div} + \nabla + T(\nabla v_s) \end{array} \right),$$

with domain

$$D(L) = \{ u = \mathbb{T}(\phi, w) \in L^2(\mathbb{T}); \ w \in H^1(\mathbb{T}), \ Lu \in L^2(\mathbb{T}) \},$$

where $\mathbb{T}, \mathbb{D}, \rho_s, v_s$ and $\mathbb{P}(\rho_s)$ are the non-dimensional forms of Ω, D, \mathbb{P}_s, \mathbb{v}_s and $p(\mathbb{p}_s)$ respectively; I_3 denotes the 3×3 identity matrix; ν, ν' and γ are some positive constants.
We will show that there exists a bounded projection P_0 satisfying $P_0 e^{-tL} = e^{-tL} P_0$ such that if Reynolds and Mach numbers are sufficiently small, then
\[
\|e^{-tL} P_0 u_0 - (\sigma u^{(0)})(t)\|_{L^2(\Omega)} \le C(1 + t)^{-\frac{3}{4}} \|u_0\|_{L^1(\Omega)}.
\] (1.7)
Here $u^{(0)}$ is some function of x', and σ is a function of x_3 and t; and σ is a solution of one dimensional linear heat equation
\[
\begin{aligned}
\partial_t \sigma - \kappa_1 \partial^2_{x_3} \sigma + \kappa_0 \partial_{x_3} \sigma &= 0, \\
\sigma |_{t=0} &= \int_0^1 \phi_0(x', x_3) dx_3
\end{aligned}
\] (1.8)
with some constants $\kappa_0 \in \mathbb{R}$ and $\kappa_1 > 0$. Some estimates for operators related to P_0 are established; and, as in [2, 4], we will give a factorization of $e^{-tL} P_0$ which is useful in the study of nonlinear problem. As for the $I - P_0$ part of e^{-tL}, we will establish the exponential decay estimate
\[
\|e^{-tL}(I - P_0) u_0\|_{H^1(\Omega)} \le C e^{-dt} \left\{ \|u_0\|_{H^1(\Omega) \times \tilde{H}^1(\Omega)} + t^{-\frac{1}{2}} \|u_0\|_{L^2(\Omega)} \right\}
\] (1.9)
for a positive constant d. Here $\tilde{H}^1(\Omega)$ is the set of all locally H^1 functions in $L^2(\Omega)$ whose tangential derivatives near $\partial \Omega$ belong to $L^2(\Omega)$.

The linear problem (1.6) will be investigated through the Fourier transform \mathcal{F} in $x_3 \in \mathbb{R}$ that leads to the problem on D, written in the form,
\[
\partial_t u + L_\xi u = 0, \quad u |_{t=0} = u_0,
\]
where $\xi \in \mathbb{R}$ denotes the dual variable. The operator L_ξ has different properties $|\xi| \le r_0$ and $|\xi| > r_0$, where r_0 is a positive number sufficiently small.

The spectrum of $-L_\xi$ for $|\xi| \le r_0$ can be regarded as a perturbation from the one with $\xi = 0$, and we will show that the spectrum near the origin is given by a simple eigenvalue $\lambda_0(\xi) = -i \kappa_0 \xi - \kappa_1 \xi^2 + O(|\xi|^3)$ as $|\xi| \to 0$. Furthermore, we will establish the boundedness of the eigenprojection $\Pi(\xi)$ for the eigenvalue $\lambda_0(\xi)$ in some Sobolev space by investigating the regularity of the corresponding eigenfunctions. Setting $P_0 = \mathcal{F}^{-1} 1_{\{|\xi| \le r_0\}} \Pi(\xi) \mathcal{F}$ with a frequency cut-off function $1_{\{|\xi| \le r_0\}}$ such that $1_{\{|\xi| \le r_0\}} = 1$ for $|\xi| \le r_0$ and $1_{\{|\xi| \le r_0\}} = 0$ for $|\xi| > r_0$, we find the desired asymptotic behavior of $e^{-tL} P_0$ as described in (1.7) and (1.8). As for the complimentary part $e^{-tL}(I - P_0)$, we have already shown in [1] that
\[
\|e^{-tL}(I - P_0) u_0\|_{H^1(\Omega)} \le e^{-dt} \|u_0\|_{H^1(\Omega)}.
\]
In this paper we will improve the class of initial value u_0 and will show that the exponential decay estimate holds for $u_0 \in H^1(\Omega) \times \tilde{H}^1(\Omega)$ as in (1.9). This improvement will be also useful in the study of the nonlinear problem.

This paper is organized as follows. In Section 2 we first rewrite the problem into the system of equations in a non-dimensional form and then present the existence of a stationary solution of parallel flow. We state the main result of this paper in Section 3. In Section 4 we will investigate the spectrum of $-L_\xi$ for $|\xi| \le r_0$, and in Section 5 we will establish a factorization of $e^{-tL} P_0$ and prove (1.7). Section 6 is devoted to the proof of (1.9).
\section{Preliminaries}

In this section we introduce notations and then rewrite the problem into a non-dimensional form. In the end of this section we state the existence of stationary solution which represents parallel flow.

\subsection{Notation}

We first introduce some notations which will be used throughout the paper. For $1 \leq p \leq \infty$ we denote by $L^p(X)$ the usual Lebesgue space on a domain X and its norm is denoted by $\| \cdot \|_{L^p(X)}$. Let m be a nonnegative integer. $H^m(X)$ denotes the m th order Sobolev space on X with norm $\| \cdot \|_{H^m(X)}$. In particular, we write $L^2(X)$ for $H^0(X)$.

We denote by $C^m_0(X)$ the set of all C^m functions with compact support in X. $H^m_0(X)$ stands for the completion of $C^m_0(X)$ in $H^m(X)$. We denote by $H^{-1}(X)$ the dual space of $H^1_0(X)$ with norm $\| \cdot \|_{H^{-1}(X)}$.

We simply denote by $L^p(X)$ (resp., $H^m(X)$) the set of all vector fields $w = T(w^1, w^2, w^3)$ on X and its norm is denoted by $\| \cdot \|_{L^p(X)}$ (resp., $\| \cdot \|_{H^m(X)}$). For $u = T(\phi, w)$ with $\phi \in H^S(X)$ and $w = T(w^1, w^2, w^3) \in H^m(X)$, we define $\| u \|_{H^S(X) \times H^m(X)}$ by $\| u \|_{H^S(X) \times H^m(X)} = \| \phi \|_{H^S(X)} + \| w \|_{H^m(X)}$.

When $X = \Omega$ we abbreviate $L^p(\Omega)$ as L^p, and likewise, $H^m(\Omega)$ as H^m. The norm $\| \cdot \|_{L^p(\Omega)}$ is written as $\| \cdot \|_{L^p}$, and likewise, $\| \cdot \|_{H^m(\Omega)}$ as $\| \cdot \|_{H^m}$.

In the case $X = D$ we denote the norm of $L^p(D)$ by $| \cdot |_{L^p}$. The norm of $H^m(D)$ is denoted by $| \cdot |_{H^m}$, respectively. The inner product of $L^2(D)$ is denoted by

$$\langle f, g \rangle = \int_D f(x') \overline{g(x')} dx', \quad f, g \in L^2(D).$$

Here \overline{g} denotes the complex conjugate of g. For $u_j = T(\phi_j, w_j)$ ($j = 1, 2$), we also define a weighted inner product $\langle u_1, u_2 \rangle$ by

$$\langle u_1, u_2 \rangle = \frac{1}{\gamma} \int_D \phi_1 \overline{\phi_2} \frac{\rho'(\rho)}{\gamma \rho} dx' + \int_D w_1 \cdot \overline{w_2} \rho dx',$$

where $\rho_s = \rho_s(x')$ is the density of the parallel flow u_s. As will be seen in Proposition 2.1 below, $\rho_s(x')$ and $\frac{\rho'(\rho_s(x'))}{\rho(x')} \rho(x')$ are strictly positive in D.

For $f \in L^1(D)$ we denote the mean value of f over D by $\langle f \rangle$:

$$\langle f \rangle = (f, 1) = \frac{1}{|D|} \int_D f dx',$$

where $|D| = \int_D dx'$. For $u = T(\phi, w) \in L^1(D)$ with $w = T(w^1, w^2, w^3)$ we define $\langle u \rangle$ by

$$\langle u \rangle = \langle \phi \rangle + \langle w_1 \rangle + \langle w_2 \rangle + \langle w_3 \rangle.$$

Partial derivatives of a function u in x, x', x_3 and t are denoted by $\partial_x u, \partial_{x'} u, \partial_{x_3} u$ and $\partial_t u$. We also write higher order partial derivatives of u in x as $\partial_x^k u = (\partial_x^k u; |\alpha| = k)$.
We denote the $n \times n$ identity matrix by I_n. We define 4×4 diagonal matrices Q_0 and \tilde{Q} by

$$Q_0 = \text{diag}(1, 0, 0, 0), \quad \tilde{Q} = \text{diag}(0, 1, 1, 1).$$

It then follows that for $u = T(\phi, w)$ with $w = T(w^1, w^2, w^3)$,

$$Q_0 u = \begin{pmatrix} \phi \\ 0 \end{pmatrix}, \quad \tilde{Q} u = \begin{pmatrix} 0 \\ w \end{pmatrix}.$$

We denote the Fourier transform of $f = f(x_3)$ ($x_3 \in \mathbb{R}$) by $\mathcal{F}[f]$:

$$f(\xi) = \mathcal{F}[f](\xi) = \int_{\mathbb{R}} f(x_3) e^{-i\xi x_3} dx_3, \quad \xi \in \mathbb{R}.$$

The inverse Fourier transform is denoted by \mathcal{F}^{-1}:

$$\mathcal{F}^{-1}[f](x_3) = (2\pi)^{-1} \int_{\mathbb{R}} f(\xi) e^{i\xi x_3} d\xi, \quad x_3 \in \mathbb{R}.$$

We denote the resolvent set of a closed operator A by $\rho(A)$ and the spectrum by $\sigma(A)$.

We finally introduce a function space which consists of locally H^1 functions in $L^2(\Omega)$ whose tangential derivatives near ∂D belong to $L^2(\Omega)$. To do so, we first introduce a local curvilinear coordinate system. For any $x_0 \in \partial D$, there exist a neighborhood \mathcal{O}_{x_0} of x_0 and a smooth diffeomorphism map $\Psi = (\Psi_1, \Psi_2) : \mathcal{O}_{x_0} \to B_1(0) = \{ z' = (z_1, z_2) : |z'| < 1 \}$ such that

$$\begin{array}{l}
\Psi(\mathcal{O}_{x_0} \cap D) = \{ z' \in B_1(0) : z_1 > 0 \}, \\
\Psi(\mathcal{O}_{x_0} \cap \partial D) = \{ z' \in B_1(0) : z_1 = 0 \}, \\
\det \nabla_x \Psi \neq 0 \quad \text{on} \quad \mathcal{O}_{x_0} \cap D.
\end{array}$$

By the tubular neighborhood theorem, there exist a neighborhood $\mathcal{O}_{\tilde{x}_0}$ of \tilde{x}_0 and a local curvilinear coordinate system $y' = (y_1, y_2)$ on $\mathcal{O}_{\tilde{x}_0}$ defined by

$$x' = y_1 a_1(y_2) + \Psi^{-1}(0, y_2) : \mathcal{R} \to \mathcal{O}_{\tilde{x}_0},$$

(2.1)

where $\mathcal{R} = \{ y' = (y_1, y_2) : |y_1| \leq \delta_1, |y_2| \leq \delta_2 \}$ for some $\delta_1, \delta_2 > 0$; $a_1(y_2)$ is the unit inward normal to ∂D that is given by

$$a_1(y_2) = \frac{\nabla_{x'} \Psi_1}{|\nabla_{x'} \Psi_1|}.$$

Setting $y_3 = x_3$ we obtain

$$\nabla_x = e_1(y_2) \partial_{y_1} + J(y') e_2(y_2) \partial_{y_2} + e_3 \partial_{y_3},$$
\[\nabla_y = \begin{pmatrix} \frac{\partial e_1(y_2)}{\partial x} \\ \frac{\partial e_2(y_2)}{\partial x} \\ \frac{\partial e_3(y_2)}{\partial x} \end{pmatrix} \nabla_x, \]

where

\[
e_1(y_2) = \begin{pmatrix} a_1(y_2) \\ 0 \end{pmatrix}, \quad e_2(y_2) = \begin{pmatrix} a_2(y_2) \\ 0 \end{pmatrix}, \quad e_3 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}; \quad (2.2)
\]

and state the existence of stationary solution which represents parallel \now. Let us denote the normal and tangential derivatives by \(\partial_n \) and \(\partial \), respectively. Let us denote the normal and tangential derivatives by \(\partial_n \) and \(\partial \), i.e.,

\[
\partial_n = \partial_{y_1}, \quad \partial = \partial_{y_2}.
\]

Since \(\partial D \) is compact, there are bounded open sets \(\mathcal{O}_m \) \((m = 1, \ldots, N)\) such that \(\partial D \subset \bigcup_{m=1}^N \mathcal{O}_m \) and for each \(m = 1, \ldots, N \), there exists a local curvilinear coordinate system \(y' = (y_1, y_2) \) as defined in (2.1) with \(\mathcal{O}_{\tilde{x}_0}, \Psi \) and \(\mathcal{R} \) replaced by \(\mathcal{O}_m, \Psi^m \) and \(\mathcal{R}_m = \{ y' = (y_1, y_2) : |y_1| < \tilde{\delta}_1^m, |y_2| < \tilde{\delta}_2^m \} \) for some \(\tilde{\delta}_1^m, \tilde{\delta}_2^m > 0 \). At last, we take an open set \(\mathcal{O}_0 \subset D \) such that

\[
\bigcup_{m=0}^N \mathcal{O}_m \supset D, \quad \overline{\mathcal{O}_0} \cap \partial D = \emptyset.
\]

We set a local coordinate \(\mathcal{O}_0 = (y_1, y_2) \) such that \(y_1 = x_1, y_2 = x_2 \) on \(\mathcal{O}_0 \). We note that if \(h \in H^2(D) \), then \(h \big|_{\partial D} = 0 \) implies that \(\partial^k h \big|_{\partial D \cap \mathcal{O}_m} = 0 \) \((k = 0, 1)\).

Let us introduce a partition of unity \(\{ \chi_m \}_{m=0}^N \) subordinate to \(\{ \mathcal{O}_m \}_{m=0}^N \), satisfying

\[
\sum_{m=0}^N \chi_m = 1 \text{ on } D, \quad \chi_m \in C_0^\infty(\mathcal{O}_m) \quad (m = 0, 1, 2 \ldots, N).
\]

We denote by \(\tilde{H}^1(\Omega) \) the set of all locally \(H^1 \) functions in \(L^2(\Omega) \) whose tangential derivatives near \(\partial \Omega \) belong to \(L^2(\Omega) \), and its norm is denoted by \(\| w \|_{\tilde{H}^1(\Omega)} \):

\[
\| w \|_{\tilde{H}^1(\Omega)} = \| w \|_2 + \| \partial_{x_3} w \|_2 + \| \chi_0 \partial_{x_4} w \|_2 + \sum_{m=1}^N \chi_m \| \partial w \|_2.
\]

Note that \(H_0^1(\Omega) \) is dense in \(\tilde{H}^1(\Omega) \).

2.2 Stationary solution

In this subsection we rewrite the problem into the one in a non-dimensional form and state the existence of stationary solution which represents parallel flow. Let \(k_0 \) be an integer satisfying \(k_0 \geq 3 \). We introduce the following non-dimensional variables:

\[
x = \ell \tilde{x}, \quad v = V \tilde{v}, \quad \rho = \tilde{\rho}, \quad t = \frac{\ell}{V} \tilde{t},
\]
\[p = \rho_s V^2 \bar{P}, \quad \Phi = \frac{V^2}{\bar{e}} \bar{\Phi}, \quad g^3 = \frac{V^2 \bar{g}^3}{\bar{e}}. \]

\[V = |\pi^3_s|^k_{C^0(D)} = \sum_{k=0}^{k_0} \sup_{x' \in D} \ell_k |\partial_{x'}^k \pi^3_s(x')|, \quad \ell = \left(\int_D dx' \right)^\frac{1}{2}. \]

The problem (1.1)-(1.4) is then transformed into the following non-dimensional problem on \(\bar{\Omega} = \bar{D} \times \mathbb{R} \):

\[
\begin{align*}
\partial_t \bar{\rho} + \text{div} \bar{\rho} \bar{\nu} &= 0, \quad \text{(2.3)} \\
\bar{\rho} (\partial_t \bar{\nu} + \bar{\nu} \cdot \nabla \bar{\nu}) - \nu \Delta \bar{\nu} - (\nu + \nu') \nabla_3 \text{div} \bar{\nu} + \bar{P}'(\bar{\rho}) \nabla \bar{\nu} &= \bar{\rho} \bar{g}, \quad \text{(2.4)} \\
\bar{\nu} |_{\partial \bar{D}} &= 0, \quad \text{(2.5)} \\
(\bar{\rho}, \bar{\nu}) |_{t=0} &= (\bar{\rho}_0, \bar{\nu}_0). \quad \text{(2.6)}
\end{align*}
\]

Here \(\bar{D} \) is a bounded and connected domain in \(\mathbb{R}^2 \); \(\bar{g} = T(\partial_{x_1} \bar{\Phi}, \partial_{x_2} \bar{\Phi}, \bar{g}^3) \); and \(\nu \) and \(\nu' \) are non-dimensional parameters:

\[
\nu = \frac{\mu}{\rho_s \ell V}, \quad \nu' = \frac{\mu'}{\rho_s \ell V}.
\]

We also introduce a parameter \(\gamma \):

\[
\gamma = \sqrt{\bar{P}'(1)} = \frac{\sqrt{P'(\rho_0)}}{V}.
\]

Note that the Reynolds and Mach numbers are given by \(1/\nu \) and \(1/\gamma \), respectively.

In what follows, for simplicity, we omit tildes of \(\bar{x}, \bar{t}, \bar{\nu}, \bar{\rho}, \bar{g}, \bar{P}, \bar{\Phi}, \bar{D} \) and \(\bar{\Omega} \) and write them as \(x, t, \nu, \rho, g, P, \Phi, D \) and \(\Omega \). Observe that, due to the non-dimensionalization, we have

\[
|D| = \int_D dx' = 1,
\]

and thus,

\[
\langle f \rangle = \int_D f(x') dx'.
\]

Let us state the existence of a stationary solution which represents parallel flow.

Proposition 2.1. If \(\Phi \in C^{k_0}(\bar{D}) \), \(g^3 \in H^{k_0}(D) \) and \(|\Phi|_{C^{k_0}} \) is sufficiently small, then (2.3)-(2.5) has a stationary solution \(u_s = T(\rho_s, v_s) \in C^{k_0}(\bar{D}) \). Here \(\rho_s \) satisfies

\[
\begin{cases}
\text{Const.} - \Phi(x') = \int_1^{\rho_s(x')} \frac{P'(\eta)}{\eta} d\eta, \\
\int_D \rho_s dx' = 1, \quad \rho_1 < \rho_s(x') < \rho_2 \quad (\rho_1 < 1 < \rho_2)
\end{cases}
\]

for some constants \(\rho_1, \rho_2 > 0 \); and \(v_s \) is a function of the form \(v_s = T(0, 0, v^3_s) \) with \(v^3_s = v^3_s(x') \) being the solution of

\[
\begin{cases}
-\nu \Delta v^3_s = \rho_s g^3, \\
v^3_s |_{\partial D} = 0.
\end{cases}
\]

8
Furthermore, \(u_s = T(\rho_s, v_s) \) satisfies the estimates:

\[
|\rho_s(x') - 1|_{C^k} \leq C|\Phi|_{C^k}(1 + |\Phi|_{C^k})^k,
\]
\[
|v^3_s|_{C^k} \leq C|v^3_s|_{H^{k+2}} \leq C|\Phi|_{C^k}(1 + |\Phi|_{C^k})^k|g^3|_{H^k}
\]
for \(k = 3, 4, \ldots, k_0 \).

Proposition 2.1 can be proved in a similar manner to the proof of [18, Lemma 2.1].

3 Main results

We set \(\phi = \rho_s + \gamma^{-2}\phi \) and \(v = v_s + w \) in (2.3)-(2.6) (without tildes) and omit the nonlinear terms of \(\phi \) and \(w \). We then arrive at the linearized problem

\[
\partial_t u + Lu = 0, \quad u = T(\phi, w), \quad w|_{\partial D} = 0, \quad u|_{t=0} = u_0,
\]

where

\[
L = \left(\nabla \left(\frac{v_s \cdot \nabla}{\gamma^2 \rho_s} \right) + \frac{\nu' \nu_s}{\gamma^2 \rho_s} \Delta I_3 - \frac{\nu + \nu'}{\rho_s} \nabla \text{div} + v_s \cdot \nabla + e_3 \otimes (\nabla v^3_s) \right).
\]

Here, \(e_3 = T(0, 0, 1) \); and, for \(\mathbf{a} = T(a_1, a_2, a_3) \) and \(\mathbf{b} = T(b_1, b_2, b_3) \), \(\mathbf{a} \otimes \mathbf{b} \) is the \(3 \times 3 \) matrix \((a_i b_j)\).

We consider \(L \) as an operator on \(L^2(\Omega) \) with domain

\[
D(L) = \left\{ u = T(\phi, w) \in L^2(\Omega); \ w \in H^1_0(\Omega), \ Lu \in L^2(\Omega) \right\}.
\]

As was shown in [1] (see also [7]), \(-L \) generates a \(C_0 \)-semigroup \(e^{-tL} \) on \(L^2(\Omega) \). Furthermore, if \(u_0 \in H^1(\Omega) \times \tilde{H}^1(\Omega) \), then

\[
e^{-tL}u_0 \in C([0, T]; H^1(\Omega) \times \tilde{H}^1(\Omega)) \cap C((0, T]; H^1(\Omega) \times H^1_0(\Omega)),$nabla \tilde{Q}e^{-tL}u_0 \in L^2(0, T; \tilde{H}^1(\Omega))
\]

(3.2)

for all \(T > 0 \). The regularity property (3.2) of \(e^{-tL} \) can be proved as follows. It is not difficult to see that if \(u_0 \in H^1(\Omega) \times H^1_0(\Omega) \), then \(e^{-tL}u_0 \) satisfies

\[
e^{-tL}u_0 \in C([0, T]; H^1(\Omega) \times H^1_0(\Omega)),$nabla \tilde{Q}e^{-tL}u_0 \in L^2(0, T; H^1(\Omega))
\]

(3.3)

Since \(H^1_0(\Omega) \) is dense in \(\tilde{H}^1(\Omega) \), one can see from (3.3), Lemma 6.5 and Lemma 6.6 below that \(e^{-tL}u_0 \) satisfies (3.2) if \(u_0 \in H^1(\Omega) \times \tilde{H}^1(\Omega) \).

In what follows we set

\[
\omega = \|\rho_s - 1\|_{C^{k_0}}.
\]

We have the following estimates for \(e^{-tL}u_0 \).
There exist positive constants \(\nu_0, \gamma_0 \) and \(\omega_0 \) such that if \(\nu \geq \nu_0, \frac{\gamma^2}{2\nu + \nu'} \geq \gamma_0^2 \) and \(\omega \leq \omega_0 \), then \(e^{-tL}u_0 \) is decomposed as

\[
e^{-tL}u_0 = e^{-tL}P_0u_0 + e^{-tL}P_\infty u_0.
\]

Here \(P_0 \) and \(P_\infty \) are projections satisfying

\[
P_0 + P_\infty = I, \quad P^2 = P,
\]

\[
PL \subseteq L^1, \quad Pe^{-tL} = e^{-tL}P
\]

for \(P \in \{P_0, P_\infty\} \); and \(e^{-tL}P_0 \) and \(e^{-tL}P_\infty \) have the following properties.

(i) If \(u_0 \in L^1(\Omega) \cap L^2(\Omega) \), then \(e^{-tL}P_0u_0 \) satisfies the following estimates

\[
\|\partial_x^k \partial_{x_3}^l e^{-tL}P_0u_0\|_2 \leq C_{k,l}(1 + t)^{-\frac{1}{4}}\frac{1 + 1}{2} \|u_0\|_1 \tag{3.4}
\]

uniformly for \(t \geq 0 \) and for \(k = 0, 1, \cdots, k_0 \) and \(l = 0, 1, \cdots; \)

\[
\|e^{-tL}P_0u_0 - [H(t)\langle \phi_0 \rangle]u(0)\|_2 \leq C \frac{1}{t} \|u_0\|_1 \tag{3.5}
\]

uniformly for \(t > 0 \). Here

\[
H(t)\langle \phi_0 \rangle = F^{-1}[e^{-(i\kappa_0 + \kappa_1 \xi_2)\xi}(\phi_0)],
\]

where \(u(0) = u(0)(x') \) is the function given in Lemma 4.1 below; and \(\kappa_0 \in \mathbb{R} \) and \(\kappa_1 > 0 \) are some constants satisfying

\[
\kappa_0 = O(1),
\]

\[
\kappa_1 = C \gamma^2 \left\{ 1 + O\left(\frac{1}{\gamma} \right) + \left(\frac{\nu}{\gamma^2} + \frac{1}{\gamma} \right) \times O\left(\frac{\nu + \nu'}{\gamma^2} \right) \right\},
\]

where \(C \) is a positive constant.

(ii) If \(u_0 \in H^1(\Omega) \times H^1(\Omega) \), then there exists a constant \(d > 0 \) such that \(e^{-tL}P_\infty u_0 \) satisfies

\[
\|e^{-tL}P_\infty u_0\|_{H^1} \leq Ce^{-dt}(\|u_0\|_{H^1 \times H^1} + t^{-\frac{1}{2}} \|u_0\|_2) \tag{3.6}
\]

uniformly for \(t > 0 \).

Remark 3.2. It is well-known that if \(u_0 = T(\phi_0, w_0) \in L^1(\Omega) \), then \(\|H(t)\langle \phi_0 \rangle\|_2 = O(t^{-\frac{1}{2}}) \), and \(\sigma = \sigma(x_3, t) = H(t)\langle \phi_0 \rangle \) satisfies

\[
\begin{cases}
\partial_t \sigma - \kappa_1 \partial_x^2 \sigma + \kappa_0 \partial_{x_3} \sigma = 0, \\
\sigma|_{t=0} = \int_D \phi_0(x', x_3)dx'.
\end{cases}
\]

More detailed properties of \(P_0 \) and \(e^{-tL}P_0 \) will be given in Section 5 below, where we will establish a factorization of \(e^{-tL}P_0 \) which will be useful in the nonlinear analysis.
To prove Theorem 3.1, we consider the Fourier transform of (3.1) in x_3 variable which is written as

$$
\begin{align*}
\partial_t \psi + i \xi v_s^3 \psi + \gamma^2 \nabla' \cdot (\rho_s w') + \gamma^2 i \xi \rho_s w^3 &= 0, \\
\partial_t w' - \frac{\nu}{\rho_s} (\Delta' - \xi^2) w' - \frac{\nu + \nu'}{\rho_s} \nabla'(\nabla' \cdot w' + i \xi w^3) + \nabla'(\frac{P(\rho_s)}{\gamma \rho_s} \phi) + i \xi v_s^3 w' &= 0, \\
\partial_t w^3 - \frac{\nu}{\rho_s} (\Delta' - \xi^2) w^3 - \frac{\nu + \nu'}{\rho_s} i \xi (\nabla' \cdot w' + i \xi w^3) + i \xi (\frac{P(\rho_s)}{\gamma \rho_s} \phi) + i \xi v_s^3 w^3 \\
&+ \frac{\nu}{\gamma \rho_s} \Delta' v_s^3 \phi + w' \cdot \nabla' v_s^3 &= 0, \\
|w|_{\partial D} &= 0
\end{align*}
$$

for $t > 0$, and

$$
T(\phi, w) |_{t=0} = T(\phi, w_0) = u_0.
$$

Therefore, we arrive at the following problem

$$
\frac{du}{dt} + L_\xi u = 0, \quad u |_{t=0} = u_0,
$$

where $\xi \in \mathbb{R}$ is a parameter. Here $u = T(\phi(x', t), w(x', t)) \in D(L_\xi)$ ($x' \in D, t > 0$), u_0 is a given initial value, and L_ξ is the operator on $L^2(D)$ of the form

$$
L_\xi = A_\xi + B_\xi + C_0,
$$

where

$$
A_\xi = \begin{pmatrix}
0 & 0 & 0 \\
0 & - \frac{\nu}{\rho_s} (\Delta' - |\xi|^2) I_2 - \frac{\nu + \nu'}{\rho_s} \nabla' \nabla'. & 0 \\
0 & - i \frac{\nu + \nu'}{\rho_s} \xi \nabla'. & - \frac{\nu}{\rho_s} (\Delta' - |\xi|^2) + \frac{\nu + \nu'}{\rho_s} |\xi|^2
\end{pmatrix},
$$

$$
B_\xi = \begin{pmatrix}
i \xi v_s^3 \\
i \xi v_s^3 & \gamma^2 \nabla' (\rho_s) & i \gamma^2 \rho_s \xi \\
i \xi (\frac{P(\rho_s)}{\gamma \rho_s}) & 0 & i \xi v_s^3
\end{pmatrix},
$$

$$
C_0 = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\frac{\nu}{\gamma \rho_s} \Delta' v_s^3 & T(\nabla' v_s^3) & 0
\end{pmatrix},
$$

with domain

$$
D(L_\xi) = \{ u = T(\phi, w) \in L^2(D); \ w \in H^1_0(D), \ L_\xi u \in L^2(D) \}.
$$

Note that $D(L_\xi) = D(L_0)$ for all $\xi \in \mathbb{R}$. Here and in what follows, we denote

$$
\Delta' = \partial_{x_1}^2 + \partial_{x_2}^2, \quad \nabla' = T(\partial_{x_1}, \partial_{x_2}).
$$

As in the case of L, we can see that $-L_\xi$ generates a C_0-semigroup on $L^2(D)$. Furthermore, if $u_0 \in H^1(D) \times \tilde{H}^1(D)$, then

$$
e^{-tL_\xi}u_0 \in C([0, T]; H^1(D) \times \tilde{H}^1(D)) \cap C((0, T]; H^1(D) \times H^1_0(D)),\tag{3.13}
$$

$$
\partial_x \tilde{Q} e^{-tL_\xi}u_0 \in L^2(0, T; \tilde{H}^1(D))
$$

for any $T > 0$.

In Section 4 we will investigate the spectrum of $-L_\xi$ for $|\xi| \ll 1$. In Section 5 we will give the proof of Theorem 3.1 (i). In Section 6 we will prove Theorem 3.1 (ii).
4 Spectrum of $-L_\xi$ for $|\xi| \ll 1$

In this section, we consider the spectrum of $-L_\xi$ for $|\xi| \ll 1$. For simplicity, in what follows, we denote $\nu + \nu'$ by $\tilde{\nu}$, i.e.,

$$\tilde{\nu} = \nu + \nu'.$$

Let us consider the resolvent problem

$$(\lambda + L_\xi)u = f$$

with $|\xi| \ll 1$, where $u = T(\phi, w) \in D(L_\xi) = D(L_0)$ and $f = T(f^0, g) \in L^2(D)$.

We introduce the adjoint operator L_ξ^* of L_ξ with respect to the weighted inner product $\langle \cdot, \cdot \rangle$. The operator L_ξ^* is given by

$$L_\xi^* = A_\xi^* + B_\xi^* + C_0^*$$

with domain of definition

$$D(L_\xi^*) = \{ u = T(\phi, w) \in L^2(D); w \in H^1_0(D), L_\xi^* u \in L^2(D) \}.$$

Here

$$A_\xi^* = A_\xi, \quad B_\xi^* = -B_\xi$$

and

$$C_0^* = \begin{pmatrix} 0 & 0 & \gamma^2 \nu \Delta' v_s^3 \\ 0 & 0 & \nabla' v_s^3 \\ 0 & 0 & 0 \end{pmatrix}.$$

Note that $D(L_\xi) = D(L_0^*)$ for any $\xi \in \mathbb{R}$.

We begin with a lemma on the zero eigenvalue of L_0 and L_0^* which was proved in [1, Lemma 4.1]. Here L_0 and L_0^* stand for L_ξ and L_ξ^* with $\xi = 0$, respectively.

Lemma 4.1. ([1, Lemma 4.1]) (i) There exists a constant $\omega_0 > 0$ such that if $\omega \leq \omega_0$, then $\lambda = 0$ is a simple eigenvalue of L_0 and L_0^*.

(ii) The eigenspaces for $\lambda = 0$ of L_0 and L_0^* are spanned by $u^{(0)}$ and $u^{(0)*}$, respectively, where

$$u^{(0)} = T(\phi^{(0)}, w^{(0)}), \quad w^{(0)} = T(0, 0, w^{(0),3})$$

and

$$u^{(0)*} = T(\phi^{(0)*}, 0).$$

Here

$$\phi^{(0)}(x') = \alpha_0 \gamma^2 \rho_s(\phi^{(0)}), \quad \alpha_0 = \left(\int_D \gamma^2 \rho_s(x') dx' \right)^{-1};$$

and $w^{(0),3}$ is the solution of the following problem

$$\left\{ \begin{array}{l} -\Delta' w^{(0),3} = -\frac{1}{\gamma^2 \rho_s} \Delta' v_s^3 \phi^{(0)}, \\
\end{array} \right.$$
and
\[\phi^{(0)*}(x') = \frac{2^2}{\alpha_0} \phi^{(0)}(x'). \]

Furthermore, \(\phi^{(0)} = O(1) \), \(\alpha_0 = O(1) \) and \(w^{(0),3} = O(\gamma^{-2}) \) as \(\gamma \to \infty \).

(iii) The eigenprojections \(\Pi^{(0)} \) and \(\Pi^{(0)*} \) for \(\lambda = 0 \) of \(L_0 \) and \(L_0^* \) are given by
\[
\Pi^{(0)} u = \langle u, u^{(0)*} \rangle u^{(0)} = \langle Q_0 u \rangle u^{(0)},
\]
\[
\Pi^{(0)*} u = \langle u, u^{(0)} \rangle u^{(0)*}.
\]
for \(u = T(\phi, w) \), respectively.

(iv) Let \(u^{(0)} \) be written as \(u^{(0)} = u_0^{(0)} + u_1^{(0)} \), where
\[
u_0^{(0)} = T(\phi^{(0)}, 0), \quad u_1^{(0)} = T(0, w^{(0)}).
\]
Then
\[
u^{(0)*} = \frac{2}{\alpha_0} \nu_0^{(0)}
\]
and
\[
\langle u, u^{(0)} \rangle = \frac{2\pi}{\alpha} (\phi + (w^3, w^{(0),3} \rho_0))
\]
for \(u = T(\phi, w) = T(\phi, w', w^3) \).

We next establish the resolvent estimate for \(|\xi| \ll 1 \). To do so, let us consider the resolvent problem for \(\xi = 0 \)
\[
(\lambda + L_0) u = f,
\]
where \(u = T(\phi, w) \in D(L_0) \) and \(f = T(f^0, g) \in L^2(D) \). Decomposing \(u \) in (4.1) as
\[
u = \langle \phi \rangle u^{(0)} + u_1
\]
with
\[
u_1 = (I - \Pi^{(0)}) u,
\]
we obtain
\[
\lambda \left(\langle \phi \rangle u^{(0)} + u_1 \right) + L_0 u_1 = f.
\]
Applying \(\Pi^{(0)} \) and \(I - \Pi^{(0)} \) to this equation, we have
\[
\begin{cases}
\lambda \langle \phi \rangle = \langle f^0 \rangle, \\
\lambda u_1 + L_0 u_1 = f_1,
\end{cases}
\]
where \(f_1 = (I - \Pi^{(0)}) f \). We see from the first equation of (4.2) that if \(\lambda \neq 0 \), then
\[
\langle \phi \rangle = \frac{1}{\lambda} \langle f^0 \rangle.
\]
This implies that
\[
|\langle \phi \rangle| \leq \frac{1}{|\lambda|} |f^0|_2.
\]
On the other hand, the \(u_1 \)-part has the following properties. The second equation of \((4.2)\) is written as

\[
\begin{align*}
\lambda \phi_1 + \gamma^2 \nabla' \cdot (\rho_s w'_1) &= f_1^0, \\
\lambda w'_1 - \frac{\nu}{\rho_s} \Delta' w'_1 - \frac{\nu}{\rho_s} \nabla' \nabla' \cdot w'_1 + \nabla' \left(\frac{\rho_s}{\gamma_{\rho_s}} \phi_1 \right) &= g_1', \\
\lambda w_1^3 - \frac{\nu}{\rho_s} \Delta' w_1^3 + \frac{\nu}{\gamma_{\rho_s}^2} \Delta' w'_1 \phi_1 + w'_1 \cdot \nabla' v_s^3 &= g_1^3,
\end{align*}
\]

(4.4)

where \(u_1 = T(\phi_1, w_1) = T(\phi_1, w'_1, w_1^3) \) and \(f_1 = T(f_1^0, g_1) = T(f_1^0, g'_1, g_1^3) \).

To state the estimates for the \(u_1 \)-part, we introduce a quantity \(\tilde{D}_0[w_1] \) defined by

\[\tilde{D}_0[w_1] = |\nabla' w_1|^2 + |\nabla' \cdot w'_1|^2 \]

for \(w_1 = T(w'_1, w_1^3) \).

Proposition 4.2. There exist constants \(\nu_0 > 0, \gamma_0 > 0 \) and \(\omega_0 > 0 \) and an energy functional \(E_0[u_1] \) such that if \(\nu \geq \nu_0, \frac{\gamma_0^2}{\nu + \nu} \geq \gamma_0^2 \) and \(\omega \leq \omega_0 \), then there holds the estimate

\[(\text{Re}\lambda) E_0[u_1] + c(|\phi_1|^2 + \tilde{D}_0[w_1]) \leq C|f_1|_2|u_1|_2, \]

where \(c \) and \(C \) are positive constants independent of \(u_1 \) and \(\lambda \); and \(E_0[u_1] \) is equivalent to \(|u_1|^2 \).

Proposition 4.2 can be proved in a similar manner to the proof of [1, Proposition 4.7] by replacing \(\frac{d}{dt} \) with \(\text{Re}\lambda \) and taking \(\xi = 0 \) there.

The Poincaré inequality yields \(\tilde{D}_0[w_1] \geq C|w_1|^2 \) with a positive constant \(C \). Therefore, the resolvent estimates for \(-L_0\) now follow from (4.3) and Proposition 4.2.

Proposition 4.3. There exist constants \(\nu_0 > 0, \gamma_0 > 0 \) and \(\omega_0 > 0 \) such that if \(\nu \geq \nu_0, \frac{\gamma_0^2}{\nu + \nu} \geq \gamma_0^2 \) and \(\omega \leq \omega_0 \), then there is a positive constant \(c_0 > 0 \) such that

\[\Sigma_0 \equiv \{ \lambda \neq 0 : \text{Re}\lambda > -c_0 \} \subset \rho(-L_0). \]

Furthermore, the following estimates

\[|(\lambda + L_0)^{-1} f|_2 \leq C \left\{ \frac{1}{|\lambda|} |f^0|_2 + \frac{1}{(\text{Re}\lambda + c_0)} |f_1|_2 \right\}, \]

\[|\partial_{\nu'} \tilde{Q}(\lambda + L_0)^{-1} f|_2 \leq C \left\{ \frac{1}{|\lambda|} |f^0|_2 + \frac{1}{(\text{Re}\lambda + c_0)^{1/2}} |f_1|_2 \right\} \]

hold uniformly for \(\lambda \in \Sigma_0 \). The same assertions also hold for \(-L_0^*\).

Based on Proposition 4.3, we have the resolvent estimates for \(-L_\xi\) with \(|\xi| \ll 1 \).

Theorem 4.4. There exist constants \(\nu_0 > 0, \gamma_0 > 0 \) and \(\omega_0 > 0 \) such that if \(\nu \geq \nu_0, \frac{\gamma_0^2}{\nu + \nu} \geq \gamma_0^2 \) and \(\omega \leq \omega_0 \), then the following assertions hold. For any \(\eta \) satisfying \(0 < \eta \leq \frac{c_0}{2} \) there is a number \(r_0 = r_0(\eta) \) such that

\[\Sigma_1 \equiv \{ \lambda \neq 0 : |\lambda| \geq \eta, \text{Re}\lambda \geq -\frac{c_0}{2} \} \subset \rho(-L_\xi) \]

14
for $|\xi| \leq r_0$. Furthermore, the following estimates
\[|(\lambda + L_\xi)^{-1}f|_2 \leq C|f|_2, \]
\[\left| \partial_{\xi'} \{ \bar{Q}(\lambda + L_\xi)^{-1}f \} \right|_2 \leq C|f|_2 \]
hold uniformly for $\lambda \in \Sigma_1$ and ξ with $|\xi| \leq r_0$. The same assertions also hold for $-L_\xi^*$.

Proof. Let us decompose L_ξ as
\[L_\xi = L_0 + \xi L^{(1)} + \xi^2 L^{(2)}, \]
where
\[L^{(1)} = \begin{pmatrix} v_3^s & 0 & -\frac{\gamma^2 \rho_s}{\rho_s} \\ 0 & v_3 I_2 & -\frac{\rho_s}{\rho_s} \nabla' \\ \frac{\gamma^2 \rho_s}{\rho_s} & -\frac{\rho_s}{\rho_s} \nabla' & v_3 I_2 \end{pmatrix}, \quad L^{(2)} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \frac{\nu}{\rho_s} I_2 & 0 \\ 0 & 0 & \frac{\nu + \bar{\nu}}{\rho_s} \end{pmatrix}. \]

For $u = T(\phi, w) \in L^2(D) \times H^1_0(D)$ we have
\[|L^{(1)}u|_2 \leq C|u|_{L^2 \times H^1}, \quad |L^{(2)}u|_2 \leq C|u|_2. \quad (4.5) \]

Therefore, we see from Proposition 4.3 that for any $0 < \eta \leq \frac{c_0}{2}$ there exists $r_0 > 0$ such that if $|\xi| \leq r_0$, then
\[\left| (\xi L^{(1)} + \xi^2 L^{(2)})(\lambda + L_0)^{-1}f \right|_2 \leq \frac{1}{2}|f|_2. \quad (4.6) \]

It then follows that
\[\Sigma_1 \equiv \{ \lambda \colon |\lambda| > \eta, \Re \lambda \geq -\frac{c_0}{2} \} \subset \rho(-L_\xi), \]
and that, if $\lambda \in \Sigma_1$, then $(\lambda + L_\xi)^{-1}$ is given by the Neumann series expansion
\[(\lambda + L_\xi)^{-1} = (\lambda + L_0)^{-1} + \sum_{N=0}^{\infty} (-1)^N \left[(\xi L^{(1)} + \xi^2 L^{(2)})(\lambda + L_0)^{-1} \right] \]
for $|\xi| \leq r_0$, and it holds that
\[|(\lambda + L_\xi)^{-1}f|_2 \leq C|f|_2 \quad (4.7) \]
for $\lambda \in \Sigma_1$ and $|\xi| \leq r_0$. We thus obtain the desired estimates. This completes the proof. \hfill \Box

As for the spectrum of $-L_\xi$ near $\lambda = 0$, we have the following result.
Theorem 4.5. There exist positive constants ν_0, γ_0, ω_0 and r_0 such that if $\nu \geq \nu_0$, $\frac{\gamma^2}{\nu + \omega} \geq \gamma_0^2$ and $\omega \leq \omega_0$, then it holds that

$$\sigma(-L_\xi) \cap \{ \lambda : |\lambda| \leq \frac{\omega}{\nu} \} = \{ \lambda_0(\xi) \}$$

for ξ with $|\xi| \leq r_0$, where $\lambda_0(\xi)$ is a simple eigenvalue of $-L_\xi$ that has the form

$$\lambda_0(\xi) = -i\kappa_0\xi - \kappa_1\xi^2 + \mathcal{O}(|\xi|^3)$$

as $\xi \to 0$. Here $\kappa_0 \in \mathbb{R}$ and $\kappa_1 > 0$ are the numbers given by

$$\kappa_0 = \langle \nu_x^2 \phi(0) + \gamma^2 \rho_s w^{(0)}, \lambda_0(\xi) \rangle = \mathcal{O}(1),$$

$$\kappa_1 = \frac{\gamma^2}{\nu} \{ \alpha_0 \left[(-\Delta')^{-\frac{1}{2}} \rho_s \right]_2^2 + \mathcal{O}\left(\frac{1}{\gamma} \right) + \left(\frac{\nu}{\gamma} + \frac{1}{\nu} \right) \times \mathcal{O}\left(\frac{\nu + \omega}{\nu} \right) \},$$

where $-\Delta'$ denotes the Laplace operator on $L^2(D)$ under the zero Dirichlet boundary condition with domain

$$D(-\Delta') = H^2(D) \cap H^1_0(D).$$

Proof. For $u \in L^2(D) \times H^1_0(D)$ we see from Theorem 4.4 and (4.5) that

$$|L^{(1)}u|_2 \leq C(|L_0u|_2 + |u|_2), \quad |L^{(2)}u|_2 \leq C|u|_2.$$

Therefore, since 0 is a simple eigenvalue of $-L_0$, we see from the analytic perturbation theory that there exists a positive constant r_0 such that

$$\sigma(-L_\xi) \cap \{ \lambda : |\lambda| \leq \frac{\omega}{\nu} \} = \{ \lambda_0(\xi) \}$$

for all ξ with $|\xi| \leq r_0$. Here $\lambda_0(\xi)$ is a simple eigenvalue of $-L_\xi$. Furthermore, $\lambda_0(\xi)$ and the eigenprojection $\Pi(\xi)$ for $\lambda_0(\xi)$ are expanded as

$$\lambda_0(\xi) = \lambda^{(0)} + \xi \lambda^{(1)} + \xi^2 \lambda^{(2)} + \mathcal{O}(|\xi|^3),$$

$$\Pi(\xi) = \Pi^{(0)} + \xi \Pi^{(1)} + \mathcal{O}(|\xi|^2)$$

(4.8)

with

$$\lambda^{(0)} = 0,$$

$$\lambda^{(1)} = -\langle L^{(1)}u^{(0)}, u^{(0)*} \rangle,$$

$$\lambda^{(2)} = -\langle L^{(2)}u^{(0)}, u^{(0)*} \rangle + \langle L^{(1)}S L^{(1)}u^{(0)}, u^{(0)*} \rangle,$$

$$\Pi^{(1)} = -\Pi^{(0)} L^{(1)} S - S L^{(1)} \Pi^{(0)},$$

where

$$S = \left\{ \left(I - \Pi^{(0)} \right) L_0 \left(I - \Pi^{(0)} \right) \right\}^{-1}.$$

We first consider $\lambda^{(1)}$. Since

$$L^{(1)}u^{(0)} = i \begin{pmatrix} v^2_x \phi^{(0)} + \gamma^2 \rho_s w^{(0)}, 3 \\ - \frac{\nu_x}{\rho_s} \nabla w^{(0)}, 3 \\ \alpha_0 + v^2_s w^{(0)}, 3 \end{pmatrix},$$

16
we obtain
\[\lambda^{(1)} = -\langle L^{(1)}u^{(0)}, u^{(0)*} \rangle = -\langle Q_0L^{(1)}u^{(0)} \rangle = -i\langle v_s^3\phi^{(0)} + \gamma^2\rho_s w^{(0),3} \rangle = i\mathcal{O}(1) \]
as \(\gamma^2 \to \infty \).

We next consider \(\lambda^{(2)} \). Since \(Q_0L^{(2)}u^{(0)} = 0 \), we have
\[\langle L^{(2)}u^{(0)}, u^{(0)*} \rangle = \langle Q_0L^{(2)}u^{(0)} \rangle = 0. \]
It then follows that
\[\lambda^{(2)} = \langle L^{(1)}SL^{(1)}u^{(0)}, u^{(0)*} \rangle = \langle Q_0L^{(1)}SL^{(1)}u^{(0)} \rangle. \]

We define \(\tilde{u} \) by
\[\tilde{u} = SL^{(1)}u^{(0)}, \]
which satisfies
\[
\begin{cases}
L_0\tilde{u} = (I - \Pi^{(0)})L^{(1)}u^{(0)} = L^{(1)}u^{(0)} + \lambda^{(1)}u^{(0)}, \\
\tilde{u} \big|_{\partial D} = 0, \\
\langle \tilde{\phi} \rangle = 0.
\end{cases}
\]

(4.9)

Note that \(\tilde{u} = T(\tilde{\phi}, \tilde{w}) \in i\mathbb{R}^4 \) and \(\lambda^{(1)} \in i\mathbb{R} \). We rewrite \(\lambda^{(2)} \) as
\[\lambda^{(2)} = \langle Q_0L^{(1)}\tilde{u} \rangle = \langle iv_s^3\tilde{\phi} + i\gamma^2\rho_s \tilde{w}^3 \rangle, \]
where \(\tilde{u} = T(\tilde{\phi}, \tilde{w}) = T(\tilde{\phi}, \tilde{w}', \tilde{w}^3) \). To show the strict negativity of \(\lambda^{(2)} \), we estimate \(\tilde{u} \). The problem (4.9) is written as
\[
\begin{cases}
\gamma^2\nabla' \cdot (\rho_s \tilde{w}') = i\xi v_s^3\phi^{(0)} + i\gamma^2\rho_s w^{(0),3} + \lambda^{(1)}\phi^{(0)}, \\
-\frac{\nu}{\rho_s} \Delta' \tilde{w}' - \frac{\nu}{\rho_s} \nabla' \nabla' \cdot \tilde{w}' + \nabla' \left(\frac{F'(\rho_s)}{\gamma \rho_s} \tilde{\phi} \right) = -i\frac{\nu}{\rho_s} \nabla' w^{(0),3}, \\
-\frac{\nu}{\rho_s} \Delta' \tilde{w}^3 + \frac{\nu \Delta' v_s^3}{\gamma \rho_s} \tilde{\phi} + \tilde{w}' \cdot \nabla' v_s^3 = i\frac{F'(\rho_s)}{\gamma \rho_s} \phi^{(0)} + iv_s^3 w^{(0),3} + \lambda^{(1)}w^{(0),3}, \\
\tilde{w}' \big|_{\partial D} = 0, \\
\langle \tilde{\phi} \rangle = 0.
\end{cases}
\]
i.e., \(\tilde{u} = T(\tilde{\phi}, \tilde{w}) = T(\tilde{\phi}, \tilde{w}', \tilde{w}^3) \) is a solution of
\[
\begin{cases}
\nabla' \cdot \tilde{w}' = F^0[\tilde{w}'], \\
-\nu \Delta' \tilde{w}' + \nabla' \tilde{\phi} = G^0[\tilde{\phi}, \tilde{w}'], \\
\tilde{w}' \big|_{\partial D} = 0, \\
\langle \tilde{\phi} \rangle = 0
\end{cases}
\]
and
\[
\begin{cases}
-\nu \Delta' \tilde{w}^3 = G^3[\tilde{\phi}, \tilde{w}'], \\
\tilde{w}^3 \big|_{\partial D} = 0,
\end{cases}
\]

(4.10)
where $F^0[\tilde{w}], \ G^s[\tilde{\phi}, \tilde{w}]$ and $G^3[\tilde{\phi}, \tilde{w}]$ are defined as
\[
F^0[\tilde{w}] = \frac{1}{\gamma} \left\{ i v^3 \phi(0) + i \gamma^2 \rho_s w^{0.3} + \lambda^{(1)} \phi(0) \right\} - \nabla' \cdot ((1 - \rho_s) \tilde{w}'),
\]
\[
G^s[\tilde{\phi}, \tilde{w}] = -i \tilde{v} \nabla' w^{0.3} + \tilde{v} \nabla' F^0[\tilde{w}] + \nabla' ((1 - \rho_s) \tilde{\phi}) + (\nabla' \rho_s) \tilde{\phi} + \rho_s \nabla' \left\{ \left(1 - \frac{F'(\rho_s)}{\gamma \rho_s} \right) \tilde{\phi} \right\},
\]
\[
G^3[\tilde{\phi}, \tilde{w}] = \rho_s \left\{ i \frac{F'(\rho_s)}{\gamma \rho_s} \phi(0) + i v^3 w^{0.3} + \lambda^{(1)} w^{0.3} \right\} - \rho_s \left\{ \frac{v^3 v^3}{\gamma \rho_s} \phi + \tilde{w}' \cdot \nabla v^3 \right\}.
\]
As for the problem (4.10), since $\lambda^{(1)} = -i (v^3 \phi(0) + \gamma^2 \rho_s w^{0.3})$, it holds that $\langle F^0[\tilde{w}'] \rangle = 0$. Furthermore, we have
\[
|F^0[\tilde{w}']|_2 \leq C \left\{ \frac{1}{\gamma} \langle |\lambda^{(1)}| |\phi(0)|_2 + |\phi(0)|_2 + |\gamma^2 |w^{0.3}|_2 \rangle + \omega |\nabla' \tilde{w}'|_2 \right\}
\leq C \omega |\nabla' \tilde{w}'|_2 + O \left(\frac{\omega}{\gamma} \right),
\]
\[
|G^s[\tilde{\phi}, \tilde{w}]|_{H^{-1}} \leq C \left\{ \frac{1}{\gamma} |\nabla' w^{0.3}|_{H^{-1}} + \frac{1}{\gamma} |\nabla' F^0[\tilde{w}]|_{H^{-1}} + |\nabla' ((1 - \rho_s) \tilde{\phi})|_{H^{-1}} \right\}
\leq C \omega \langle |\phi|_2 + |\nabla' \tilde{w}'|_2 \rangle + O \left(\frac{\omega}{\gamma} \right).
\]
Since $(\tilde{\phi}, \tilde{w}') \in \tilde{X} \equiv \{(p, \nu') \in L^2(D) \times H^1_0(D) : \langle p \rangle = 0\}$ and it is a solution of the Stokes system (4.10), we see from estimate for the Stokes system (see, e.g., [20]) that there holds the estimate
\[
|\tilde{\phi}|_2^2 + \nu^2 |\nabla' \tilde{w}'|_2^2 \leq \nu^2 \left\{ C \omega^2 |\tilde{w}'|_2^2 + O \left(\frac{\omega}{\gamma} \right) \right\} + \left\{ C \omega^2 \langle |\phi|_2 + |\nu| |\nabla' \tilde{w}'|_2 \rangle + O \left(\frac{\omega}{\gamma} \right) \right\}
\leq C \omega^2 \left\{ |\phi|_2^2 + (\nu + \nu^2) |\nabla' \tilde{w}'|_2^2 \right\} + O \left(\frac{\omega^2}{\gamma} \right).
\]
Therefore, if ω is so small that $\omega^2 < \frac{1}{2 \lambda_1} \min \{ 1, (\frac{\nu}{\nu + \nu^2})^2 \}$, then
\[
|\tilde{\phi}|^2 + \nu^2 |\nabla' \tilde{w}'|^2_2 = O \left(\frac{(\nu + \nu^2)^2}{\gamma} \right). \quad (4.12)
\]
As for the problem (4.11), since
\[
|G^3[\tilde{\phi}, \tilde{w}]|_2 \leq C \left\{ \frac{1}{\gamma} \langle |\lambda^{(1)}| |w^{0.3}|_2 + |\phi(0)|_2 + |w^{0.3}|_2 + |\phi(0)|_2 + |\tilde{w}'|_2 \rangle \right\}
\leq C \left\{ \frac{\gamma}{\gamma} |\phi|_2 + |\tilde{w}'|_2 \right\} + O \left(\frac{\omega}{\gamma} \right),
\]
we have $G^3[\tilde{\phi}, \tilde{w}] \in L^2(D)$. It then follows that
\[
\tilde{w}^3 = \frac{1}{\nu} (\nabla')^{-1} G^3[\tilde{\phi}, \tilde{w}].
\]
Since $\phi(0) = \alpha \frac{\gamma^2 \rho_s}{F'(\rho_s)}$ (see Lemma 4.1 (ii)), we find that
\[
\langle \rho_s \tilde{w}^3 \rangle = \frac{1}{\nu} \langle \rho_s (\nabla')^{-1} G^3[\tilde{\phi}, \tilde{w}] \rangle
= \frac{1}{\nu} \langle \rho_s (\nabla')^{-1} (i \alpha \rho_s) \rangle
+ \frac{1}{\nu} \langle \rho_s (\nabla')^{-1} \left\{ i \rho_s v_3 w^{0.3} + \rho_s \lambda^{(1)} w^{0.3} - \frac{\nu \Delta v_3}{\gamma \rho_s} \phi - \rho_s \tilde{w}' \cdot \nabla' v^3 \right\} \rangle
\leq \frac{\gamma}{\gamma} \left\{ \frac{\gamma^2 \rho_s}{F'(\rho_s)} \right\}_2^2
+ \frac{1}{\nu} \langle \rho_s (\nabla')^{-1} \left\{ i \rho_s v_3 w^{0.3} + \rho_s \lambda^{(1)} w^{0.3} - \frac{\nu \Delta v_3}{\gamma \rho_s} \phi - \rho_s \tilde{w}' \cdot \nabla' v^3 \right\} \rangle.
\]
Furthermore, since \(\tilde{u} = T(\tilde{\phi}, \tilde{w}') \in i\mathbb{R}^4 \) and \(\lambda^{(1)} \in i\mathbb{R} \), we see from (4.12) that
\[
\langle \rho_s(\Delta')^{-1} \{ i\rho_s v_3^2 w^{(0),3} + \rho_s \lambda^{(1)} w^{(0),3} - \frac{\nu \Delta' v_3^2}{\gamma^2 \rho_s} \tilde{\phi} - \rho_s \tilde{w}' \cdot \nabla' v_3^3 \} \rangle
= i\mathcal{O}(\frac{1}{T'}) + i\left(\frac{\nu}{T^2} + \frac{1}{T'} \right) \times \mathcal{O}(\frac{\nu + \tilde{v}}{T^2}).
\]
It then follows that
\[
\langle \rho_s \tilde{w}^3 \rangle
= i\mathcal{O}(\langle -\Delta' \rangle^{-\frac{3}{2}} \rho_s^2) + i\mathcal{O}(\langle \frac{1}{T^2} \rangle + \langle \frac{\nu}{T^2} + \frac{1}{T'} \rangle \times \mathcal{O}(\frac{\nu + \tilde{v}}{T^2})).
\]
By (4.12) we also have
\[
\langle v_3^3 \tilde{\phi} \rangle = i\mathcal{O}(\frac{\nu + \tilde{v}}{T^2}).
\]
We conclude that
\[
\lambda^{(2)} = \langle i v_3^2 \tilde{\phi} + i\gamma^2 \rho_s \tilde{w}^3 \rangle
= i\gamma^2 \left[\frac{\nu}{T'} \langle -\Delta' \rangle^{-\frac{3}{2}} \rho_s^2 + i\mathcal{O}(\langle \frac{1}{T^2} \rangle + \langle \frac{\nu}{T^2} + \frac{1}{T'} \rangle \times \mathcal{O}(\frac{\nu + \tilde{v}}{T^2})) \right] + i \cdot i\mathcal{O}(\frac{\nu + \tilde{v}}{T^2})
= -\frac{\nu}{T'} \left[\frac{\nu}{T'} \langle -\Delta' \rangle^{-\frac{3}{2}} \rho_s^2 + \left\{ \mathcal{O}(\langle \frac{1}{T^2} \rangle + \langle \frac{\nu}{T^2} + \frac{1}{T'} \rangle \times \mathcal{O}(\frac{\nu + \tilde{v}}{T^2})) \right\} \right]
< 0
\]
for sufficiently small \(\frac{1}{T'} \) and \(\frac{\nu + \tilde{v}}{T^2} \). We thus obtain the desired estimates. This completes the proof. \(\square \)

We next establish some estimates related to \(\Pi(\xi) \) in \(H^k(D) \). We first consider estimates for higher order derivatives of \((\lambda + L_0)^{-1}f \).

Proposition 4.6. For any \(f = T(f^0, g) \in H^k(D) \times H^{k-1}(D) \). There exist positive constants \(\nu_0, \gamma_0, \omega_0 \) and \(c_1 \) such that if \(\nu \geq \nu_0, \frac{\nu_0}{\nu} \geq \gamma_0 \), \(\omega \leq \omega_0 \) and \(\lambda \in \Sigma \equiv \{ \lambda \neq 0 : |\lambda| \leq c_1 \} \), then \((\lambda + L_0)^{-1}f \in H^k(D) \times (H^{k+1}(D) \cap H_0^1(D)) \) for \(k = 0, 1, \cdots, k_0 \).

Furthermore, the following estimate holds:
\[
| (\lambda + L_0)^{-1}f |_{H^k \times H^{k+1}} \leq C (1 + \frac{1}{|\lambda|}) |f|_{H^k \times H^{k-1}},
\]
where \(C \) is a positive constant independent of \(\lambda \in \Sigma_2 \). The same assertions also hold for \(-L_0^* \).

Proof. For a given \(f = T(f^0, g) \in H^k(D) \times H^{k-1}(D) \), we consider the problem
\[
\begin{aligned}
(\lambda + L_0)U &= f, \\
W |_{\partial D} &= 0
\end{aligned}
\tag{4.13}
\]
for \(U = T(\Phi, W) \). Here \(L_0 \) is differential operator given by
\[
L_0 U = \begin{pmatrix}
\frac{\gamma^2 \nabla' \cdot (\rho_s W')}{
ho_s} \\
-\frac{\nu}{\rho_s} \Delta' W' \frac{\rho_s}{\rho_s} \nabla' \cdot W' + \nabla' (\frac{P'(\rho_s)}{\gamma^2 \rho_s} \Phi) \\
-\frac{\nu}{\rho_s} \Delta' W' + \frac{\nu \Delta' v_3^3}{\gamma^2 \rho_s} \Phi + W' \cdot \nabla' v_3^3
\end{pmatrix}
\]

19
for $U = T(\Phi, W)$. To solve the problem (4.13), we decompose Φ and f^0 as

$$\Phi = \Phi_1 + \sigma, \quad f^0 = f_1^0 + \langle f^0 \rangle,$$

where $\sigma = \langle \Phi \rangle$, $\Phi_1 = \Phi - \sigma$ and $f_1^0 = f^0 - \langle f^0 \rangle$. Note that

$$\langle \Phi_1 \rangle = 0, \quad \langle f_1^0 \rangle = 0.$$

Then (4.13) is equivalent to the problem

$$\lambda \sigma = \langle f^0 \rangle, \quad (4.14)$$

$$\lambda \Phi_1 + \gamma^2 \nabla \cdot (\rho_s W') = f_1^0, \quad (4.15)$$

$$\lambda W' - \frac{\nu}{\rho_s} \Delta' W' - \frac{E}{\gamma \rho_s} \nabla' \cdot W' + \nabla' \left(\frac{E' (\rho_s)}{\gamma \rho_s} (\sigma + \Phi_1) \right) = g', \quad (4.16)$$

$$\lambda W^3 - \frac{\nu}{\rho_s} \Delta' W^3 + \frac{E' v_3}{\gamma \rho_s^2} (\sigma + \Phi_1) - W' \cdot \nabla' v_s^3 = g^3 \quad (4.17)$$

with $W \mid_{\partial D} = 0$. If $\lambda \neq 0$, then we find from (4.14) that

$$\sigma = \frac{1}{\lambda} \langle f^0 \rangle. \quad (4.18)$$

Substituting $\sigma = \frac{1}{\lambda} \langle f^0 \rangle$ into (4.16) and (4.17), we obtain

$$\begin{cases}
\lambda \Phi_1 + \gamma^2 \nabla \cdot (\rho_s W') = f_1^0, \\
\lambda W' - \frac{\nu}{\rho_s} \Delta' W' - \frac{E}{\gamma \rho_s} \nabla' \cdot W' + \nabla' \left(\frac{E' (\rho_s)}{\gamma \rho_s} \Phi_1 \right) = g' - \frac{1}{\lambda} \langle f^0 \rangle \nabla' \left(\frac{E' (\rho_s)}{\gamma \rho_s} \right), \\
\lambda W^3 - \frac{\nu}{\rho_s} \Delta' W^3 + \frac{E' v_3}{\gamma \rho_s^2} \Phi_1 - W' \cdot \nabla' v_s^3 = g^3 - \frac{1}{\lambda} \langle f^0 \rangle \frac{E' V_s^3}{\gamma \rho_s^2},
\end{cases} \quad (4.19)$$

with $W \mid_{\partial D} = 0$. Let us write the problem (4.19) as

$$\begin{cases}
\nabla' \cdot W' = F^0[\Phi_1, W', f_1^0], \\
-\nu \Delta' W' + \nabla' \Phi_1 = G'[\Phi_1, W', f^0, g'], \\
W' \mid_{\partial D} = 0,
\end{cases} \quad (4.20)$$

and

$$\begin{cases}
-\nu \Delta' W^3 = G^3[\Phi_1, W', W^3 : f^0, g^3], \\
W^3 \mid_{\partial D} = 0.
\end{cases} \quad (4.21)$$

Here

$$F^0[\Phi_1, W', f_1^0] = -\frac{1}{\gamma^2} \lambda \Phi_1 + \nabla' \cdot ((1 - \rho_s) W') + \frac{1}{\gamma^2} f_1^0,$$

$$G'[\Phi_1, W', f^0, g'] = -\lambda \rho_s W' + \nabla' F^0[\Phi_1, W', f_1^0] + \nabla' ((1 - \rho_s) \Phi_1) + \nabla' \rho_s \Phi_1 - \frac{1}{\lambda} \langle f^0 \rangle \rho_s \nabla' \left(\frac{E' (\rho_s)}{\gamma \rho_s} \right) + \rho_s \nabla' ((1 - \frac{E' (\rho_s)}{\gamma \rho_s}) \Phi_1) + \rho_s g',$$

$$G^3[\Phi_1, W', W^3 : f^0, g^3] = -\lambda \rho_s W^3 - \frac{E' v_3}{\gamma \rho_s^2} \frac{1}{\lambda} \langle f^0 \rangle - \frac{E' v_3^3}{\gamma \rho_s^2} \Phi_1 - \rho_s W' \cdot \nabla' v_s^3 + \rho_s g^3.$$

We now define a set \hat{X}_k by

$$\hat{X}_k = \{(p, v') \in H^k(D) \times (H^{k+1}(D) \cap H_0^1(D)) : \langle p \rangle = 0\}$$
with norm
\[|(p, v')|_{X_k} = |p|_{H^k} + \nu |v'|_{H^{k+1}}. \]

For a given \((\tilde{\Phi}_1, \tilde{W}') \in \tilde{X}_k\), we consider the problem

\[
\begin{aligned}
\nabla' \cdot W' &= F^0[\tilde{\Phi}_1, \tilde{W}' : f^0_1], \\
-\nu \Delta W' + \nabla' \Phi_1 &= G'[\tilde{\Phi}_1, \tilde{W}' : f^0, g'], \\
W' |_{\partial D} &= 0.
\end{aligned}
\]

(4.22)

It holds that
\[\langle F^0[\tilde{\Phi}_1, \tilde{W}' : f^0_1] \rangle = 0, \quad F^0[\tilde{\Phi}_1, \tilde{W}' : f^0_1] \in H^k(D), \]

\[G'[\tilde{\Phi}_1, \tilde{W}' : f^0, g'] \in H^{k-1}(D). \]

In fact, we see that
\[\langle F^0[\tilde{\Phi}_1, \tilde{W}' : f^0_1] \rangle = -\frac{1}{\nu^2} \lambda \langle \tilde{\Phi}_1 \rangle + \langle \nabla' : ((1 - \rho_s)\tilde{W}') \rangle + \frac{1}{\nu^2} \langle f^0 \rangle = 0, \]

\[|F^0[\tilde{\Phi}_1, \tilde{W}' : f^0_1]|_{H^k} \leq C \left\{ \frac{1}{\nu^2} |\lambda| |\tilde{\Phi}_1|_{H^k} + \omega |\tilde{W}'|_{H^{k+1}} + \frac{1}{\nu^2} |f^0|_{H^k} \right\} \]

and
\[|G'[\tilde{\Phi}_1, \tilde{W}' : f^0, g']|_{H^{k-1}} \leq C \left\{ \frac{1}{\nu^2} |\lambda| |\tilde{W}'|_{H^{k-1}} + \frac{1}{\nu^2} |F^0[\tilde{\Phi}_1, \tilde{W}' : f^0_1]|_{H^k} + \omega |\tilde{\Phi}_1|_{H^k} + \frac{1}{\nu^2} |f^0|_{H^k} \right\} \]

\[+ \left\{ \frac{1}{\nu^2} |\lambda| + \omega \right\} |\tilde{\Phi}_1|_{H^k} + \nu \left(\frac{1}{\nu^2} |\lambda| + \frac{\nu + \nu \omega}{\nu} \right) |\tilde{W}'|_{H^{k+1}} + \left(\frac{1}{\nu^2} + \frac{1}{\nu^2} \right) |f^0|_{H^k} + |g'|_{H^{k-1}} \}

for a positive constant \(C\) independent of \(\lambda\). From [20], we see that there is a unique solution \((\Phi_1, W') \in X_k\) of (4.22) and there holds the estimate
\[|\Phi|_{H^k} + \nu |W'|_{H^{k+1}} \leq C \left\{ \frac{1}{\nu^2} |\lambda| |\tilde{\Phi}_1|_{H^k} + \omega |\tilde{W}'|_{H^{k+1}} + \frac{1}{\nu^2} |f^0|_{H^k} \right\} \]

(4.23)

\[+ \left(\frac{\nu + \nu \omega}{\nu^2} + \frac{1}{\nu^2} \right) |f^0|_{H^k} + |g'|_{H^{k-1}} \}

for a positive constant \(C\) independent of \(\lambda\). Let us define a map \(\Gamma_1 : \tilde{X}_k \to \tilde{X}_k\) such that
\[\Gamma_1(\tilde{\Phi}_1, \tilde{W}') = (\Phi_1, W'), \]

where \((\Phi_1, W') \in \tilde{X}_k\) is a solution of (4.22). From (4.23), for \((\tilde{\Phi}_{1,1}, \tilde{W}_1'), (\tilde{\Phi}_{1,2}, \tilde{W}_2') \in \tilde{X}_k\), the estimate
\[|\Gamma_1(\tilde{\Phi}_{1,1}, \tilde{W}_1') - \Gamma_1(\tilde{\Phi}_{1,2}, \tilde{W}_2')|_{H^k \times H^{k+1}} \leq C_1 \left\{ \left(\frac{\nu + \nu \omega}{\nu^2} + \frac{1}{\nu^2} \right) |\lambda| + \left(\frac{\nu + \nu \omega}{\nu} + 1 \right) \omega \right\} |(\tilde{\Phi}_{1,1} - \tilde{\Phi}_{1,2}, \tilde{W}_1' - \tilde{W}_2')|_{X_k} \]

21
holds for a positive constant C_1 independent of λ. If ω and $|\lambda|$ are so small that $\omega < \frac{1}{2C_1 + \frac{\nu}{\nu + \upsilon}}$ and $|\lambda| < \frac{1}{2C_1}$, then $\Gamma_1 : X_k \to X_k$ is a contraction map. This implies that there is a unique $(\Phi_1, W') \in X_k$ such that $\Gamma_1(\Phi_1, W') = (\Phi_1, W')$, i.e., there is a unique solution $(\Phi_1, W') \in X_k$ of (4.20). Furthermore, from (4.23), (Φ_1, W') satisfies the estimate

$$|\Phi_1|_{H^k} + |W'|_{H^{k+1}} \leq C\{(1 + \frac{1}{|\lambda|})|f^0|_{H^k} + |g|_{H^{k-1}}\},$$

(4.24)

where C is a positive constant independent of λ.

As for (4.21), for a given $W^3 \in H^{k+1}(D) \cap H^1_0(D)$, we consider the problem

$$\begin{align*}
-\nu \Delta W^3 &= G^3[\Phi_1, W', \tilde{W}^3 : f^0, g^3], \\
W^3 |_{\partial D} &= 0,
\end{align*}$$

(4.25)

where $(\Phi_1, W') \in X_k$ is a solution of (4.20). It holds that

$$G^3[\Phi_1, W', \tilde{W}^3 : f^0, g^3] \in H^{k-1}(D).$$

In fact, we have

$$\begin{align*}
|G^3[\Phi_1, W', \tilde{W}^3 : f^0, g^3]|_{H^{k-1}} &
\leq C\{\lambda |\widetilde{W}^3|_{H^{k-1}} + |\Phi_1|_{H^{k-1}} + |W'|_{H^{k-1}} + |g^3|_{H^{k-1}} + \frac{1}{|\lambda|}|f^0|\}
\leq C_2\{\lambda |\widetilde{W}^3|_{H^{k-1}} + (1 + \frac{1}{|\lambda|})|f^0|_{H^k} + |g|_{H^{k-1}}\}
\end{align*}$$

(4.26)

for a positive constant C_2 independent of λ. If $|\lambda|$ is sufficiently small satisfying $|\lambda| < \min\{\frac{1}{2\lambda_1}, \frac{1}{\alpha^2}\}$, then there is a unique solution $W^3 \in H^{k+1}(D) \cap H^1_0(D)$ of (4.21). Furthermore, from (4.26), W^3 satisfies the estimate

$$|W^3|_{H^{k+1}} \leq C\{(1 + \frac{1}{|\lambda|})|f^0|_{H^k} + |g|_{H^{k-1}}\},$$

(4.27)

where C is a positive constant independent of λ.

Now we set

$$\Sigma_2 \equiv \left\{\lambda \neq 0 : |\lambda| < \min\{\frac{1}{2\lambda_1}, \frac{1}{\alpha^2}\}\right\}.$$

Since $\Phi = \sigma + \Phi_1$, we see that if $\omega < \frac{1}{2\lambda_1 \nu + \upsilon}$ and $\lambda \in \Sigma_2$, then there is a unique solution $(\Phi, W) \in H^k(D) \times (H^{k+1}(D) \cap H^1_0(D))$ of (4.13). Moreover, from (4.18), (4.24) and (4.27), Φ and W satisfies the estimate

$$|\Phi|_{H^k} + |W|_{H^{k+1}} \leq |\sigma| + |\Phi_1|_{H^k} + |W'|_{H^{k+1}} + |W^3|_{H^{k+1}} \leq C\{(1 + \frac{1}{|\lambda|})|f^0|_{H^k} + |g|_{H^{k-1}}\}$$

for a positive constant C independent of $\lambda \in \Sigma_2$.

Since $D(L_0) \supset H^k(D) \times (H^{k+1}(D) \cap H^1_0(D))$, we can replace L_0 with L_0; and we find that if $\omega < \frac{1}{2\lambda_1 \nu + \upsilon}$ and $\lambda \in \Sigma_2$, then $(\lambda + L_0)^{-1}f \in H^{k+1}(D) \cap H^1_0(D)$. Furthermore, $(\lambda + L_0)^{-1}f$ satisfies the estimate

$$|(\lambda + L_0)^{-1}f|_{H^k \times H^{k+1}} \leq C\{(1 + \frac{1}{|\lambda|})|f^0|_{H^k} + |g|_{H^{k-1}}\},$$
where C is a positive constant independent of $\lambda \in \Sigma_2$. We thus obtain the desired estimates. The assertions for L_0^2 can be proved in a similar manner. This completes the proof.

We finally obtain the following estimates for the eigenfunctions u_ξ and u^*_ξ associated with $\lambda_0(\xi)$ and $\overline{\lambda}_0(\xi)$, respectively, which yields the boundedness of $\Pi(\xi)$ on $H^k(D)$.

Theorem 4.7. There exist positive constants ν_0, γ_0 and ω_0 such that if $\nu \geq \nu_0$, $\frac{\gamma_0^2}{\nu + \nu} \geq \gamma_0^2$ and $\omega \leq \omega_0$, then there exists a positive constant r_0 such that for any $\xi \in \mathbb{R}$ with $|\xi| \leq r_0$ the following assertions hold. There exist u_ξ and u^*_ξ eigenfunctions associated with $\lambda_0(\xi)$ and $\overline{\lambda}_0(\xi)$, respectively, that satisfy

$$\langle u_\xi, u^*_\xi \rangle = 1,$$

and the eigenprojection $\Pi(\xi)$ for $\lambda_0(\xi)$ is given by

$$\Pi(\xi)u = \langle u, u^*_\xi \rangle u_\xi.$$

Furthermore, u_ξ and u^*_ξ are written in the form

$$u_\xi(x') = u^{(0)}(x') + i \xi u^{(1)}(x') + |\xi|^2 u^{(2)}(x', \xi),$$

$$u^*_\xi(x') = u^{*(0)}(x') + i \xi u^{*(1)}(x') + |\xi|^2 u^{*(2)}(x', \xi),$$

and the following estimates hold

$$|u|_{H^{k+2}} \leq C_{k, r_0}$$

for $u \in \{u_\xi, u^*_\xi, u^{(1)}, u^{*(1)}, u^{(2)}, u^{*(2)}\}$ and $k = 0, 1, \cdots, k_0$: and a positive constant C_{k, r_0} depending on k and r_0.

We can prove Theorem 4.7 by using Proposition 4.6, similarly to the proof of [9, Lemma 4.3]. We thus omit the proof.

5 Spectral properties of $e^{-tL}P_0$

In this section we give a a factorization of $e^{-tL}P_0$ and prove Theorem 3.1 (i).

We denote the characteristic function of a set $\{\xi \in \mathbb{R} : |\xi| \leq r_0\}$ by $1_{\{|\xi| \leq r_0\}}$, i.e.,

$$1_{\{|\xi| \leq r_0\}}(\xi) = \begin{cases} 1, & |\xi| \leq r_0, \\ 0, & |\xi| > r_0. \end{cases}$$

We define the projection P_0 by

$$P_0 = \mathcal{F}^{-1}1_{\{|\xi| \leq r_0\}}\Pi(\xi)\mathcal{F}.$$
P_0 is a bounded projection on $L^2(\Omega)$ satisfying

$$P_0L \subset LP_0, \quad P_0 e^{-tL} = e^{-tL}P_0.$$

As in [2, 4], to investigate $e^{-tL}P_0$, we introduce operators related to u_ξ and u_ξ^*. We define the operators $\mathcal{T}: L^2(\mathbb{R}) \to L^2(\Omega)$, $\mathcal{P}: L^2(\Omega) \to L^2(\mathbb{R})$ and $\Lambda: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ by

$$\mathcal{T}\sigma = \mathcal{F}^{-1}[\mathcal{T}_\xi\sigma], \quad \mathcal{T}_\xi\sigma = 1_{\{\|\xi\| \leq \rho_0\}}u_\xi\sigma;$$

$$\mathcal{P}u = \mathcal{F}^{-1}[\mathcal{P}_\xi u], \quad \mathcal{P}_\xi u = 1_{\{\|\xi\| \leq \rho_0\}}(u, u_\xi^*);$$

$$\Lambda\sigma = \mathcal{F}^{-1}[1_{\{\|\xi\| \leq \rho_0\}}\lambda_0(\xi)\sigma]$$

for $u \in L^2(\Omega)$ and $\sigma \in L^2(\mathbb{R})$. It then follows that

$$P_0 = \mathcal{T}\mathcal{P}, \quad e^{-tL}P_0 = \mathcal{T} e^{t\Lambda}\mathcal{P}.$$

We investigate boundedness properties of \mathcal{T}, \mathcal{P} and $e^{t\Lambda}$.

As for \mathcal{T}, we have the following

Proposition 5.1. The operator \mathcal{T} has the following properties:

(i) $\partial_{x_l}^j \mathcal{T} = \mathcal{T} \partial_{x_3}^j$ for $l = 0, 1, \ldots$.

(ii) $\|\partial_{x_3}^j \mathcal{T} \sigma\|_2 \leq C\|\sigma\|_{L^2(\mathbb{R})}$ for $k = 0, 1, \ldots k_0$, $l = 0, 1, \ldots$ and $\sigma \in L^2(\mathbb{R})$.

(iii) \mathcal{T} is decomposed as

$$\mathcal{T} = \mathcal{T}^{(0)} + \partial_{x_3} \mathcal{T}^{(1)} + \partial_{x_3}^2 \mathcal{T}^{(2)}.$$

Here $\mathcal{T}^{(j)}\sigma = \mathcal{F}^{-1}[\mathcal{T}^{(j)}\sigma]$ ($j = 0, 1, 2$) with

$$\mathcal{T}^{(0)}\sigma = 1_{\{\|\xi\| \leq \rho_0\}} u^{(0)};$$

$$\mathcal{T}^{(1)}\sigma = 1_{\{\|\xi\| \leq \rho_0\}} u^{(1)}(\cdot);$$

$$\mathcal{T}^{(2)}\sigma = -1_{\{\|\xi\| \leq \rho_0\}} u^{(2)}(\cdot, \xi),$$

where $u^{(j)}$ ($j = 0, 1, 2$) are the functions given in Theorem 4.7. The assertions (i) and (ii) hold with \mathcal{T} replaced by $\mathcal{T}^{(j)}$ ($j = 0, 1, 2$).

Proof. It is clear that (i) is true. As for (ii), we can prove the estimates by using the properties of u_ξ in Theorem 4.7 and the Sobolev inequality. From the expansion of u_ξ given in Theorem 4.7, we can expand \mathcal{T} as in (iii). \qed

As for \mathcal{P}, we have the following properties.

Proposition 5.2. The operator \mathcal{P} has the following properties:

(i) $\partial_{x_3}^j \mathcal{P} = \mathcal{P} \partial_{x_3}^j$ for $l = 0, 1, \ldots$.

(ii) $\|\partial_{x_3}^j \mathcal{P} u\|_{L^2(\mathbb{R})} \leq C\|u\|_2$ for $k = 0, 1, \ldots k_0, l = 0, 1, \ldots$ and $u \in L^2(\Omega)$.

Furthermore, $\|\mathcal{P} u\|_{L^2(\mathbb{R})} \leq C\|u\|_1$ for $u \in L^1(\Omega)$.

(iii) \mathcal{P} is decomposed as

$$\mathcal{P} = \mathcal{P}^{(0)} + \partial_{x_3} \mathcal{P}^{(1)} + \partial_{x_3}^2 \mathcal{P}^{(2)}.$$
Here $\mathcal{P}^{(j)} u = F^{-1}[\mathcal{P}^{(j)} u]$ $(j = 0, 1, 2)$ with
\[
\begin{align*}
\mathcal{P}^{(0)} u &= 1_{\{\xi \leq r_0\}} \langle u, u^{(0)} \rangle = 1_{\{\xi \leq r_0\}} \langle Q_0 u \rangle, \\
\mathcal{P}^{(1)} u &= 1_{\{\xi \leq r_0\}} \langle u, u^{(1)} \rangle, \\
\mathcal{P}^{(2)} u &= -1_{\{\xi \leq r_0\}} \langle u, u^{(2)}(\xi) \rangle,
\end{align*}
\]
where $u^{(j)}$ $(j = 0, 1, 2)$ are the functions given in Theorem 4.7. The assertions (i) and (ii) hold with \mathcal{P} replaced by $\mathcal{P}^{(j)}$ $(j = 0, 1, 2)$.

Proof. It is clear that (i) holds true. As for (ii), we can prove the estimates by using the properties of u^*_k in Theorem 4.7 and the Sobolev inequality. From the expansion of u^*_k given in Theorem 4.7, we can expand \mathcal{P} as in (iii). \square

As for Λ, we have the following decay estimates for $e^{t\Lambda}$.

Proposition 5.3. The operator $e^{t\Lambda}$ satisfies the following decay estimates.
(i) $\|\partial^j_{x_3} e^{t\Lambda} \mathcal{P} u\|_{L^2(\mathbb{R})} \leq C(1 + t)^{-\frac{3}{4} - \frac{j}{2}} \|u\|_1$,
(ii) $\|\partial^j_{x_3} e^{t\Lambda} \mathcal{P}^{(j)} u\|_{L^2(\mathbb{R})} \leq C(1 + t)^{-\frac{3}{4} - \frac{j}{2}} \|u\|_1$, $j = 0, 1, 2$,
(iii) $\|\partial^j_{x_3} (T - T^{(0)}) e^{t\Lambda} \mathcal{P} u\|_2 \leq C(1 + t)^{-\frac{3}{4} - \frac{j}{2}} \|u\|_1$,
for $u \in L^1(\Omega)$ and $l = 0, 1, 2, \ldots$.

Proof. Since $\lambda_0(\xi) = -i\kappa_0 \xi - \kappa_1 \xi^2 + O(|\xi|^3)$, we see from Theorem 4.7 that
\[
\begin{align*}
\|\partial^j_{x_3} e^{t\Lambda} \mathcal{P}^{(j)} u\|_{L^2(\mathbb{R})} &\leq C \int_{\mathbb{R}} 1_{\{\xi \leq r_0\}} |\xi|^{2l} e^{-t(\kappa_0 \xi + \kappa_1 \xi^2)} \|\langle u(\xi), u^{(j)} \rangle\|^2 d\xi \\
&\leq C \int_{\mathbb{R}} 1_{\{\xi \leq r_0\}} |\xi|^{2l} e^{-t(\kappa_0 \xi + \kappa_1 \xi^2)} |u(\xi)|^2 d\xi \\
&\leq C \int \|u\|_1^2 \left(t^{-\frac{3}{4} - l} \|u\|_1^2 \right) d\xi.
\end{align*}
\]
This implies (i) and (ii). As for (iii), since $T - T^{(0)} = \partial_{x_3} T^{(1)} + \partial_{x_3} T^{(2)}$, we obtain the desired estimate from (i) and Proposition 5.1.\square

The estimate (3.4) in Theorem 3.1 follows from Propositions 5.1 and 5.3.

We next investigate the asymptotic behavior of e^{-tL}. Recall that $\mathcal{H}(t)$ is defined by
\[
\mathcal{H}(t) \sigma = F^{-1}[e^{-(i\kappa_0 \xi + \kappa_1 \xi^2)t} \sigma]
\]
for $\sigma \in L^2(\mathbb{R})$, where $\kappa_0 \in \mathbb{R}$ and $\kappa_1 > 0$ are given in Theorem 4.5. We first introduce the well-known decay estimate for $\mathcal{H}(t)$.

Proposition 5.4. There holds the estimate
\[
\|\partial^j_{x_3} (\mathcal{H}(t) \sigma)\|_{L^2(\mathbb{R})} \leq Ct^{-\frac{3}{4} - \frac{j}{2}} \|\sigma\|_{L^1(\mathbb{R})} \quad (l = 0, 1, \ldots)
\]
for $\sigma \in L^1(\mathbb{R})$.

We next consider the asymptotic behavior of $e^{t\Lambda}$. The asymptotic leading part of $e^{t\Lambda} \mathcal{P}$ is given by $\mathcal{H}(t)$. In fact, we have the following
Proposition 5.5. For $u \in L^2(\Omega)$, we set $\sigma = \langle Q_0 u \rangle$. If $u \in L^1(\Omega)$, then there holds the estimate

$$\| \partial_{x_3}^l (e^{t\Lambda}P u - \mathcal{H}(t)\sigma) \|_{L^2(\mathbb{R})} \leq Ct^{-\frac{3}{2} - \frac{1}{2}} \| u \|_1 \quad (l = 0, 1, \ldots).$$

Proof. By Proposition 5.2 we have

$$e^{t\Lambda}P = e^{t\Lambda}P^{(0)} + \partial_{x_3} e^{t\Lambda}P^{(1)} + \partial_{x_3}^2 e^{t\Lambda}P^{(2)}.$$

Set $\sigma = \langle Q_0 u \rangle$. Since $e^{t\Lambda}P^{(0)} u = \mathcal{F}^{-1}[\{1_{\{\xi\leq r_0\}} e^{\lambda_0(\xi)t} \sigma\}$, we see that

$$\mathcal{F}[e^{t\Lambda}P^{(0)} u - \mathcal{H}(t)\sigma] = (1_{\{\xi\leq r_0\}} - 1) e^{-(i\kappa_0\xi + \kappa_1\xi^2)t} \sigma + 1_{\{\xi\leq r_0\}} (e^{\lambda_0(\xi)t} - e^{-(i\kappa_0\xi + \kappa_1\xi^2)t}) \sigma.$$

By using the relation

$$\lambda_0(\xi) + (i\kappa_0\xi + \kappa_1\xi^2) = \mathcal{O}(|\xi|^3)$$

we obtain

$$e^{\lambda_0(\xi)t} - e^{-(i\kappa_0\xi + \kappa_1\xi^2)t} = e^{-(i\kappa_0\xi + \kappa_1\xi^2)t} (e^{(\lambda_0(\xi) + i\kappa_0\xi + \kappa_1\xi^2)t} - 1)$$

$$= e^{-(i\kappa_0\xi + \kappa_1\xi^2)t} \mathcal{O}(|\xi|^3) t.$$

It then follows that

$$\int_{|\xi| \leq r_0} |\xi|^2 \left| (e^{\lambda_0(\xi)t} - e^{-(i\kappa_0\xi + \kappa_1\xi^2)t}) \sigma \right|^2 d\xi \leq C \int_{|\xi| \leq r_0} |\xi|^{2(l+3)} t^2 e^{-2\kappa_1\xi^2} d\xi \|\sigma\|_{L^1(\mathbb{R})}^2$$

$$\leq C \int_{|\xi| \leq r_0} |\xi|^{2(l+1)} e^{-\kappa_1\xi^2} |\xi|^{2(l+1)} d\xi \|\sigma\|_{L^1(\mathbb{R})}^2$$

$$\leq C \int_{|\xi| \leq r_0} |\xi|^{2(l+1)} e^{-\kappa_1\xi^2} d\xi \|\sigma\|_{L^1(\mathbb{R})}^2$$

$$\leq Ct^{-\frac{3}{2} - 1} \|\sigma\|_{L^1(\mathbb{R})}^2.$$

On the other hand, we also have

$$\int_{|\xi| \leq r_0} |\xi|^2 \left| (e^{\lambda_0(\xi)t} - e^{-(i\kappa_0\xi + \kappa_1\xi^2)t}) \sigma \right|^2 d\xi \leq C \|\sigma\|_{L^1(\mathbb{R})}^2.$$

We thus obtain

$$\int_{|\xi| \leq r_0} |\xi|^2 \left| (e^{\lambda_0(\xi)t} - e^{-(i\kappa_0\xi + \kappa_1\xi^2)t}) \sigma \right|^2 d\xi \leq C (1 + t)^{-\frac{3}{2} - 1} \|\sigma\|_{L^1(\mathbb{R})}^2.$$

Similarly, we have

$$\| (1_{\{\xi\leq r_0\}} - 1) e^{-(i\kappa_0\xi + \kappa_1\xi^2)t} \sigma \|_2^2 \leq Ct^{-\frac{1}{2}} e^{-\kappa_1 r_0^2} \|\sigma\|_{L^1(\mathbb{R})}^2.$$

We thus see that

$$\| e^{t\Lambda}P^{(0)} u - \mathcal{H}(t)\sigma \|_{L^2(\mathbb{R})} \leq Ct^{-\frac{3}{2} - 1} \| u_0 \|_1.$$
This estimate and Proposition 5.3 (ii) give the desired estimate. This completes the proof.

We are now in a position to prove estimate (3.5) in Theorem 3.1 (i). In fact, we have

\[e^{-tL}P_0u - [\mathcal{H}(t)\sigma]u^{(0)} = (T - T^{(0)})e^{tA}P_0u + [\epsilon t^A P_0u - \mathcal{H}(t)\sigma]u^{(0)}. \]

This, together with Proposition 5.3 (iii) and Proposition 5.5, yields the desired estimate (3.5).

We finally state the estimates for the projection \(P_0 \).

Theorem 5.6. The projection \(P_0 \) has the following properties:

(i) \(\partial_{x^l} P_0 = P_0 \partial_{x^l} \) for \(l = 0, 1, \ldots \).
(ii) \(\|\partial_k^l \partial_{x^l} P_0u\|_2 \leq C_k\|u\|_1 \) for \(k = 0, 1, \cdots k_0, l = 0, 1, \cdots \) and \(u \in L^1(\Omega) \).
(iii) \(P_0 \) is decomposed as

\[P_0 = P_0^{(0)} + \partial_{x^l} P_0^{(1)} + \partial_{x^l}^2 P_0^{(2)}, \]

where \(P_0^{(j)} = \mathcal{F}^{-1}[P_0^{(j)}u] \) (\(j = 0, 1, 2 \)) with

\[
\begin{align*}
P_0^{(0)} &= T^{(0)}P^{(0)} = 1_{\{\xi \leq r_0\}}\Pi^{(0)}, \\
P_0^{(1)} &= T^{(0)}P^{(1)} + T^{(1)}P^{(0)} = -i1_{\{\xi \leq r_0\}}\Pi^{(1)}, \\
P_0^{(2)} &= T^{(0)}P^{(2)} + T^{(1)}\{P^{(1)} + \partial_{x^l} P^{(2)}\} + T^{(2)}\{P^{(0)} + \partial_{x^l} P^{(1)} + \partial_{x^l}^2 P^{(2)}\}.
\end{align*}
\]

Furthermore, \(P_0^{(j)} \) (\(j = 0, 1, 2 \)) satisfy assertions (i) and (ii) by replacing \(P_0 \) with \(P_0^{(j)} \).

Proof. It is clear that (i) is true. Estimates in (ii) are given by Propositions 5.1, 5.2. As for (iii), it is easy to see that \(\partial^l_{x^l} P_0^{(j)} = P_0^{(j)} \partial^l_{x^l} \). The estimates

\[\|\partial_k^l \partial_{x^l} P_0^{(j)}u\|_2 \leq C_k\|u\|_1 \]

can also be obtained by Propositions 5.1, 5.2. The relations (5.3) and (5.4) can be verified by equating the coefficients of each power of \(\xi \) in the expansions of \(\Pi(\xi) \) in (4.8) and \(\langle u, u^*_\xi \rangle u_\xi \). This completes the proof.

\[\square \]

6 Decay estimate for \(e^{-tL}(I - P_0) \)

In this section we prove Theorem 3.1 (ii). We set

\[P_\infty = I - P_0. \]

To prove Theorem 3.1 (ii), we first introduce the decay estimate of \(e^{-tL}P_\infty u_0 \) for \(u_0 \in H^1(\Omega) \times H^1_0(\Omega) \).
Proposition 6.1. There exist constants ν_0, γ_0 and ω_0 such that if $\nu \geq \nu_0$, \(\frac{\gamma^2}{\nu + 2} \geq \gamma^2_0 \) and $\omega \leq \omega_0$, then $e^{-tL}P_\infty u_0$ have the following properties. If $u_0 \in H^1(\Omega) \times H_0^1(\Omega)$, then there exists a constant $d > 0$ such that $e^{-tL}P_\infty u_0$ satisfies

$$\|e^{-tL}P_\infty u_0\|_{H^1} \leq Ce^{-dt}\|u_0\|_{H^1} \quad (6.1)$$

for $t \geq 0$.

Proof. P_∞ is written as

$$P_\infty = P_{\infty,0} + \tilde{P}_\infty,$$

where

$$P_{\infty,0}u = \mathcal{F}^{-1}[P_{\infty,0}u], \quad P_{\infty,0}u = 1_{\{|\xi| \leq r_0\}}(I - P_0)u,$$

$$\tilde{P}_\infty u = \mathcal{F}^{-1}[\tilde{P}_\infty u], \quad \tilde{P}_\infty u = (1 - 1_{\{|\xi| \leq r_0\}})u.$$

The estimate $\|e^{-tL}\tilde{P}_\infty u_0\|_{H^1} \leq Ce^{-dt}\|u_0\|_{H^1}$ was proved in [1, Theorem 3.3]. As for $P_{\infty,0}$ part, since $\rho(-L_\xi |(t-1)n_0)(t^2) \subset \{ \lambda \in C : \text{Re} \lambda \geq -\frac{\omega_0}{2} \}$ by Theorem 4.4, we have

$$|e^{-tL_\xi}P_{\infty,0}u_0|_2 \leq Ce^{-\frac{\omega_0}{2}t}|u_0|_2. \quad (6.2)$$

We now apply the argument of the proof of [1, Proposition 4.20] to $u(t) = e^{-tL}P_{\infty,0}u_0$. Due to (6.2), one can replace $e^{-\frac{\omega_0}{2}|\xi|^2t}|u_0|^2_2$ in the inequality (4.72) of [1] by $e^{-\frac{\omega_0}{2}t}|u_0|^2_2$ to obtain $E_{v_1}^{(0)}[u](t) \leq Ce^{-2\tilde{d}_1t}|u_0|^2_{H^1}$ for a positive constant \tilde{d}_1. Integrating this over $|\xi| \leq r_0$ and using the Plancherel Theorem, we have

$$\|e^{-tL}P_{\infty,0}u_0\|_{H^1} \leq Ce^{-\tilde{d}t}\|u_0\|_{H^1}$$

for a positive constant \tilde{d}. Combining the estimates for $e^{-tL}\tilde{P}_\infty u_0$ and $e^{-tL}P_{\infty,0}u_0$ we obtain the desired estimate. This completes the proof. \(\square\)

We next consider the estimate for $e^{-tL}u$ for $0 < t \leq 1$.

Proposition 6.2. Let $T > 0$. If $u_0 \in H^1(\Omega) \times \tilde{H}^1(\Omega)$, then $e^{-tL}u_0$ satisfies $e^{-tL}u_0 \in H^1(\Omega) \times H_0^1(\Omega)$ for $t > 0$ and

$$\|e^{-tL}u_0\|_{H^1} \leq C_T\{\|u_0\|_{H^1 \times \tilde{H}^1} + t^{-\frac{1}{2}}\|w_0\|_2\} \quad (6.3)$$

for $0 < t \leq T$.

Let $u_0 \in H^1(\Omega) \times \tilde{H}^1(\Omega)$. Applying Proposition 6.2 with $t = 1$, we have $u_1 = e^{-tL}u_0|_{t=1} \in H^1(\Omega) \times H_0^1(\Omega)$ and

$$\|u_1\|_{H^1} \leq C\|u_0\|_{H^1 \times \tilde{H}^1}.$$

This, together with Proposition 6.1 and Proposition 6.2, implies Theorem 3.1 (ii). It remains to prove Proposition 6.2.
Lemma 6.3. Let $T > 0$. There hold the following estimates for $0 \leq t \leq T$:
(i) for $\ell = 0, 1$,
\[
\|\partial_{x_3}^\ell u(t)\|_2^2 + c \int_0^t \|\nabla \partial_{x_3}^\ell w\|_2^2 + \|\text{div} \partial_{x_3}^\ell w\|_2^2 \, dt \leq C_T \|\partial_{x_3}^\ell u_0\|_2^2,
\]
(ii) \[
\|\chi_0 \partial_{x'} w(t)\|_2^2 + c \int_0^t \|\chi_0 \nabla \partial_{x'} w(\tau)\|_2^2 + \|\text{div} \partial_{x'} w\|_2^2 \, dt \leq C_T \left\{ \|u_0\|_2^2 + \|\partial_{x_3} u_0\|_2^2 + \|\chi_0 \partial_{x'} \phi(\tau)\|_2^2 \right\},
\]
(iii) for $1 \leq m \leq N$,
\[
\|\chi_m \partial u(t)\|_2^2 + c \int_0^t \|\chi_m \nabla \partial w\|_2^2 + \|\chi_m \text{div} \partial w\|_2^2 \, dt \leq C_T \left\{ \|u_0\|_2^2 + \|\partial_{x_3} u_0\|_2^2 + \|\chi_m \partial u_0\|_2^2 + \|\chi_m \partial_{x'} \phi_0\|_2^2 + \int_0^t \|\partial_{x'} \phi\|_2^2 \, dt \right\}.
\]

Lemma 6.3 can be proved by the energy method as those in the proof of [1, Propositions 4.7, 4.15, 4.17]. Note that here are no restrictions on ν, $\bar{\nu}$ and γ but C_T depends on T.

We next consider the L^2 estimate of the normal derivative for ϕ.

Lemma 6.4. Let $T > 0$. For $1 \leq m \leq N$, there holds the estimate for $0 \leq t \leq T$:
\[
\|\chi_m \partial_{x_3} \phi(t)\|_2^2 \leq C_T \left\{ \|u_0\|_2^2 + \|\partial_{x_3} u_0\|_2^2 + \|\chi_m \partial u_0\|_2^2 + \|\chi_m \partial_{x'} \phi_0\|_2^2 + \int_0^t \|\partial_{x'} \phi\|_2^2 \, dt \right\}.
\]

Proof. Let us transform a scalar field $p(x')$ on $D \cap \mathcal{O}_m$ as
\[
\tilde{p}(y') = p(x') \quad (y' = \Psi^m(x'), \, x' \in D \cap \mathcal{O}_m),
\]
where $\Psi^m(x')$ is a function given in Section 2. Similarly we transform a vector field $h(x') = T(h^1(x'), h^2(x'), h^3(x'))$ into $\tilde{h}(y') = T(\tilde{h}^1(y'), \tilde{h}^2(y'), \tilde{h}^3(y'))$ as
\[
h(x') = E(y') \tilde{h}(y')
\]
where $E(y') = (e_1(y'), e_2(y'), e_3)$ with $e_1(y')$, $e_2(y')$ and e_3 given in Section 2. From the proof of [1, Proposition 4.16], we have
\[
\partial_{x'} \tilde{g} \phi + \left(a + b \partial_{y_3} \right) \partial_{y_1} \tilde{g} = \tilde{p}_s I \frac{\gamma^2 \rho^2_s}{\nu + \bar{\nu}} \partial_{x'} \tilde{w}^1; \quad (6.4)
\]
where
\[
a(y') = \frac{\tilde{p}_s P'(\tilde{p}_s)}{\nu + \bar{\nu}}, \quad b(y') = \tilde{v}_s^3(y'),
\]
29
Furthermore, we have
\[I = -\frac{\nu^2}{\nu + \nu} \left\{ \nu (\text{rot}_{y} \text{rot}_{y} \tilde{w})^1 + \tilde{\rho}_s \partial_{y_1} \left(\frac{\tilde{P}(\tilde{\rho}_s)}{\gamma^2 \tilde{\rho}_s} \right) \phi + \frac{\nu}{\gamma^2} \tilde{\rho}_s (\Delta_{y} \tilde{v}_{s})^1 \phi + \tilde{\rho}_s \tilde{v}_{s}^3 \partial_{y_3} \tilde{w}^1 \right\} - \left\{ \frac{1}{\tilde{\rho}_s} \partial_{y_1} \tilde{v}_{s}^3 \partial_{y_3} \phi + \gamma^2 \frac{1}{\tilde{\rho}_s} \partial_{y_1} (\text{div}_{y} (\tilde{\rho}_s \tilde{w})) - \gamma^2 \partial_{y_1} \text{div}_{y} \tilde{w} \right\}. \]

Here \((\text{rot}_{y} \tilde{w})^1\) denotes the \(e_1(y')\) component of \(\text{rot}_{y} \tilde{w}\), and so on. We note that \((\text{rot}_{y} \text{rot}_{y} \tilde{w})^1\) does not contain \(\partial_{y_1}^2\). See the proof of [1, Proposition 4.16]. We also note that there is a positive constant \(a_0\) such that
\[a(y') \geq a_0 > 0 \]
for any \(y' \in \Psi^m(D)\).

We denote by \(e^{-t(a + b \partial_{y_3})}\) the semigroup generated by \(-a + b \partial_{y_3}\), i.e.,
\[e^{-t(a + b \partial_{y_3})} \phi_0 = \mathcal{F}^{-1}[e^{-((a(y') + \epsilon b(y'))t)} \tilde{\phi}_0]. \]

Then it is easy to see that
\[\| \tilde{x}_m e^{-t(a + b \partial_{y_3})} \tilde{\phi}_0 \|_2 \leq e^{-a_0 t} \| \tilde{x}_m \tilde{\phi}_0 \|_2. \]

In terms of \(e^{-t(a + b \partial_{y_3})}\), \(\partial_{y_1} \tilde{\phi}\) is written as
\[
\partial_{y_1} \tilde{\phi}(t) = e^{-t(a + b \partial_{y_3})} \partial_{y_1} \tilde{\phi}_0 + \int_0^t e^{-(t-\tau)(a + b \partial_{y_3})} \tilde{\rho}_s \tilde{I} (\tau) d\tau - \frac{\gamma^2 \tilde{\rho}_s^2}{\nu + \nu} \int_0^t e^{-(t-\tau)(a + b \partial_{y_3})} \partial_{y_1} \tilde{w}^1 d\tau \equiv J_1 + J_2 + J_3.
\]

As for \(J_1\) and \(J_2\), we have
\[
\| \tilde{x}_m J_1 \|_2 \leq e^{-a_0 t} \| \tilde{x}_m \partial_{y_1} \tilde{\phi}_0 \|_2,
\]
\[
\| \tilde{x}_m J_2 \|_2 \leq C \int_0^t e^{-a_0 (t-\tau)} \| \tilde{x}_m \tilde{I}(\tau) \|_2 d\tau.
\]

As for \(J_3\), integrating by parts, we have
\[
J_3 = \frac{\gamma^2 \tilde{\rho}_s^2}{\nu + \nu} [e^{-(a + b \partial_{y_3})} \tilde{w}_0^1 - \tilde{w}_1(t) + (a + b \partial_{y_3}) \int_0^t e^{-(t-\tau)(a + b \partial_{y_3})} \tilde{w}_1(\tau) d\tau].
\]

We thus obtain
\[
\| \tilde{x}_m J_3 \|_2 \leq C \left\{ e^{-a_0 t} \| \tilde{x}_m \tilde{w}_0^1 \|_2 + \| \tilde{x}_m \tilde{w}_1(t) \|_2 + \int_0^t e^{-a_0 (t-\tau)} \| \tilde{x}_m \partial_{y_3} \tilde{w}_1(\tau) \|_2 d\tau \right\}.
\]

Furthermore, we have
\[
\| \tilde{x}_m \tilde{I}(\tau) \|_2 \leq C \left\{ \| \tilde{x}_m \tilde{\phi}(\tau) \|_2 + \| \tilde{x}_m \partial_{y_3} \tilde{\phi}(\tau) \|_2 + \| \tilde{x}_m \tilde{w}(\tau) \|_2 + \| \tilde{x}_m \nabla_y \tilde{w}(\tau) \|_2 + \| \tilde{x}_m \nabla_y \partial_{y_3} \tilde{w}(\tau) \|_2 \right\}.
\]
It then follows that
\[
\|\chi_m \partial_y \tilde{\phi}(t)\|_2 \leq C \left[e^{-a_0 t} \left(\|\chi_m \partial_n \tilde{\phi}_0\|_2 + \|\chi_m \tilde{\omega}_0\|_2 \right) + \|\chi_m \tilde{w}_1(t)\|_2 \\
+ \int_0^t e^{-a_0(t-\tau)} \left\{ \|\chi_m \tilde{\phi}(\tau)\|_2 + \|\chi_m \partial_y \tilde{\phi}(\tau)\|_2 + \|\chi_m \tilde{w}(\tau)\|_2 \\
+ \|\chi_m \nabla y \tilde{\omega}(\tau)\|_2 + \|\chi_m \nabla y \partial_y \tilde{\omega}(\tau)\|_2 + \|\chi_m \nabla y \partial_y \tilde{w}(\tau)\|_2 \right\} d\tau \right].
\]

Inverting to the original coordinates x' and noting that $\partial_y = \partial_n$, $\partial_y = \partial$, we see that
\[
\|\chi_m \partial_n \phi(t)\|_2 \leq C \left\{ e^{-a_0 t} \left(\|\chi_m \partial_n \phi_0\|_2 + \|\chi_m w_0\|_2 \right) + \|\chi_m w_1(t)\|_2 \\
+ \int_0^t \|\chi_m \phi(\tau)\|_2 + \|\chi_m \partial_{x_3} \phi(\tau)\|_2 + \|\chi_m w(\tau)\|_2 \\
+ \|\chi_m \nabla w(\tau)\|_2 + \|\chi_m \nabla \partial w(\tau)\|_2 + \|\chi_m \nabla \partial_{x_3} w(\tau)\|_2 \right\} d\tau \right].
\]

This, together with Lemma 6.3, yields the desired estimate. This completes the proof. \hfill \box

By Lemma 6.3 and Lemma 6.4, we have the following estimate.

Lemma 6.5. Let $T > 0$. There exists a positive constant c such that the estimate
\[
\|u(t)\|_{H^1 \times H^1}^2 + c \int_0^t \|\nabla w(\tau)\|_2^2 + \|\text{div} w(\tau)\|_2^2 + \|\nabla \partial_{x_3} w(\tau)\|_2^2 + \|\text{div} \partial_{x_3} w(\tau)\|_2^2 \\
+ \|\chi_0 \nabla \partial_{x'} w(\tau)\|_2^2 + \|\chi_0 \text{div} \partial_{x'} w(\tau)\|_2^2 + \sum_{m=1}^N \left\{ \|\chi_m \nabla w(\tau)\|_2^2 + \|\chi_m \text{div} \partial w(\tau)\|_2^2 \right\} d\tau \\
\leq C_T \|u_0\|_{H^1 \times H^1}^2
\]
holds for $0 \leq t \leq T$.

We finally consider the L^2 estimate for $\partial_{x'} w$.

Lemma 6.6. Let $T > 0$. There holds the estimate
\[
\|\partial_{x'} w(t)\|_2 \leq C_T \left\{ \|u_0\|_{H^1 \times H^1} + t^{-\frac{1}{2}} \|w_0\|_2 \right\}
\]
for $0 < t \leq T$.

Proof. We see that w satisfies the equation
\[
\partial_t w + \overline{A} w + \overline{B} u = 0,
\]
where \overline{A} is the 3×3 operator defined by
\[
\overline{A} = -\frac{\nu}{\rho_s} \Delta - \frac{\nu + \overline{\nu}}{\rho_s} \nabla \text{div},
\]
\mathcal{B} is the 3×4 operator defined by

$$\mathcal{B} = \begin{pmatrix}
\nabla'(p_0^{(p_0)}) & v_3^2 \partial_{x_3} I_2 & 0 \\
\partial_{x_3} (p_0^{(p_0)}) & \nu \Delta v_3^2 & T(\nabla' v_3^2) & v_3^2 \partial_{x_3}.
\end{pmatrix}$$

We write $w(t)$ as

$$w(t) = e^{-tA}w_0 + \int_0^t e^{-(t-\tau)A} \mathcal{B}u(\tau) d\tau.$$

Then

$$\nabla'w(t) = \nabla' e^{-tA}w_0 + \int_0^t \nabla' e^{-(t-\tau)A} \mathcal{B}u(\tau) d\tau.$$ (6.5)

Since A is strongly elliptic, we have

$$\|\nabla' e^{-tA}w_0\|_2 \leq Ct^{-\frac{1}{2}} \|w_0\|_2$$

for $0 < t \leq T$. Furthermore, we see from Lemma 6.3 and Lemma 6.5 that

$$\left\| \int_0^t \nabla' e^{-(t-\tau)A} \mathcal{B}u(\tau) d\tau \right\|_2 \leq C \int_0^t (t-\tau)^{-\frac{1}{2}} \|\mathcal{B}u(\tau)\|_2 d\tau$$

$$\leq C \int_0^t (t-\tau)^{-\frac{1}{2}} \|u(\tau)\|_{H_1 \times \tilde{H}_1} d\tau$$

$$\leq C \|u_0\|_{H_1 \times \tilde{H}_1} \int_0^t (t-\tau)^{-\frac{1}{2}} d\tau$$

$$\leq CT^{\frac{1}{2}} \|u_0\|_{H_1 \times \tilde{H}_1}$$

for $0 < t \leq T$. It then follows from (6.5) and (6.6) that

$$\|\partial_x' w(t)\|_2 \leq CT\left\{ \|u_0\|_{H_1 \times \tilde{H}_1} + t^{-\frac{1}{2}} \|w_0\|_2 \right\}$$ (6.7)

for $0 < t \leq T$. This completes the proof.

Proof of Proposition 6.2. Let $u(t) = e^{-tL}u_0$. It is not difficult to see that if $u_0 \in H^1(\Omega) \times H^1_0(\Omega)$, then $u(t)$ satisfies

$$u \in C([0,T]; H^1(\Omega) \times H^1_0(\Omega)), \quad \tilde{Q}u \in L^2(0,T; H^2(\Omega)).$$ (6.8)

Using Lemma 6.5 and Lemma 6.6, we obtain the estimate

$$\|u(t)\|^2_{\tilde{H}_1} + c \int_0^t \mathcal{D}_1[w](\tau) d\tau \leq CT\left\{ \|u_0\|^2_{H_1 \times \tilde{H}_1} + t^{-1} \|w_0\|^2_2 \right\}$$

for $0 < t \leq T$. Here

$$\mathcal{D}_1[w] = (\|\nabla w\|^2_2 + \|\text{div} w\|^2_2) + (\|\nabla \partial_{x_3} w\|^2_2 + \|\text{div} \partial_{x_3} w\|^2_2)$$

$$+ (\|\chi_0 \nabla \partial_{x_3} w\|^2_2 + \|\chi_0 \text{div} \partial_{x_3} w\|^2_2) + \sum_{m=1}^N (\|\chi_m \nabla \partial_{x_3} w\|^2_2 + \|\chi_m \text{div} \partial_{x_3} w\|^2_2).$$
We thus obtain estimate (6.3) if $u_0 \in H^1(\Omega) \times H^1_0(\Omega)$. Since $H^1_0(\Omega)$ is dense in $\tilde{H}^1(\Omega)$, one can see from Lemma 6.5, (6.3) and (6.8) that if $u_0 \in H^1(\Omega) \times \tilde{H}^1(\Omega)$, then $u(t)$ satisfies

$$u \in C([0,T]; H^1(\Omega) \times \tilde{H}^1(\Omega)) \cap C((0,T]; H^1(\Omega) \times H^1_0(\Omega))$$

and estimate (6.3). This completes the proof. \hfill \Box

Acknowledgements. Y. Kagei was partly supported by JSPS KAKENHI Grant Number 24340028, 22244009, 24224003.

References

List of MI Preprint Series, Kyushu University
The Global COE Program
Math-for-Industry Education & Research Hub

MI

MI2008-1 Takahiro ITO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Abstract collision systems simulated by cellular automata

MI2008-2 Eiji ONODERA
The initial value problem for a third-order dispersive flow into compact almost Hermitian manifolds

MI2008-3 Hiroaki KIDO
On isosceles sets in the 4-dimensional Euclidean space

MI2008-4 Hirofumi NOTSU
Numerical computations of cavity flow problems by a pressure stabilized characteristic-curve finite element scheme

MI2008-5 Yoshiyasu OZEKI
Torsion points of abelian varieties with values in infinite extensions over a p-adic field

MI2008-6 Yoshiyuki TOMIYAMA
Lifting Galois representations over arbitrary number fields

MI2008-7 Takehiro HIROTSU & Setsuo TANIGUCHI
The random walk model revisited

MI2008-8 Silvia GANDY, Masaaki KANNO, Hirokazu ANAI & Kazuhiro YOKOYAMA
Optimizing a particular real root of a polynomial by a special cylindrical algebraic decomposition

MI2008-9 Kazufumi KIMOTO, Sho MATSUMOTO & Masato WAKAYAMA
Alpha-determinant cyclic modules and Jacobi polynomials

MI2008-10 Sangyeol LEE & Hiroki MASUDA
Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Observed Univariate SDE

MI2008-11 Hiroyuki CHIHARA & Eiji ONODERA
A third order dispersive flow for closed curves into almost Hermitian manifolds

MI2008-12 Takehiko KINOSHITA, Kouji HASHIMOTO and Mitsuhiro T. NAKAO
On the L^2 a priori error estimates to the finite element solution of elliptic problems with singular adjoint operator

MI2008-13 Jacques FARAUT and Masato WAKAYAMA
Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek polynomials
MI2008-14 Takashi NAKAMURA
Riemann zeta-values, Euler polynomials and the best constant of Sobolev inequality

MI2008-15 Takashi NAKAMURA
Some topics related to Hurwitz-Lerch zeta functions

MI2009-1 Yasuhide FUKUMOTO
Global time evolution of viscous vortex rings

MI2009-2 Hidetoshi MATSUI & Sadanori KONISHI
Regularized functional regression modeling for functional response and predictors

MI2009-3 Hidetoshi MATSUI & Sadanori KONISHI
Variable selection for functional regression model via the L_1 regularization

MI2009-4 Shuichi KAWANO & Sadanori KONISHI
Nonlinear logistic discrimination via regularized Gaussian basis expansions

MI2009-5 Toshiro HIRANOUCHI & Yuichiro TAGUCHI
Flat modules and Groebner bases over truncated discrete valuation rings

MI2009-6 Kenji KAJIWARA & Yasuhiro OHTA
Bilinearization and Casorati determinant solutions to non-autonomous 1+1 dimensional discrete soliton equations

MI2009-7 Yoshiyuki KAGEI
Asymptotic behavior of solutions of the compressible Navier-Stokes equation around the plane Couette flow

MI2009-8 Shohei TATEISHI, Hidetoshi MATSUI & Sadanori KONISHI
Nonlinear regression modeling via the lasso-type regularization

MI2009-9 Takeshi TAKAISHI & Masato KIMURA
Phase field model for mode III crack growth in two dimensional elasticity

MI2009-10 Shingo SAITO
Generalisation of Mack’s formula for claims reserving with arbitrary exponents for the variance assumption

MI2009-11 Kenji KAJIWARA, Masanobu KANEKO, Atsushi NOBE & Teruhisa TSUDA
Ultradiscretization of a solvable two-dimensional chaotic map associated with the Hesse cubic curve

MI2009-12 Tetsu MASUDA
Hypergeometric τ-functions of the q-Painlevé system of type $E_8^{(1)}$

MI2009-13 Hidenao IWANE, Hitoshi YANAMI, Hirokazu ANAI & Kazuhiro YOKOYAMA
A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic Decomposition for Quantifier Elimination

MI2009-14 Yasunori MAEKAWA
On Gaussian decay estimates of solutions to some linear elliptic equations and its applications
MI2009-15 Yuya ISHIHARA & Yoshiyuki KAGEI
Large time behavior of the semigroup on L^p spaces associated with the linearized compressible Navier-Stokes equation in a cylindrical domain

MI2009-16 Chikashi ARITA, Atsuo KUNIBA, Kazumitsu SAKAI & Tsuyoshi SAWABE
Spectrum in multi-species asymmetric simple exclusion process on a ring

MI2009-17 Masato WAKAYAMA & Keitaro YAMAMOTO
Non-linear algebraic differential equations satisfied by certain family of elliptic functions

MI2009-18 Me Me NAING & Yasuhide FUKUMOTO
Local Instability of an Elliptical Flow Subjected to a Coriolis Force

MI2009-19 Mitsunori KAYANO & Sadanori KONISHI
Sparse functional principal component analysis via regularized basis expansions and its application

MI2009-20 Shuichi KAWANO & Sadanori KONISHI
Semi-supervised logistic discrimination via regularized Gaussian basis expansions

MI2009-21 Hiroshi YOSHIDA, Yoshihiro MIWA & Masanobu KANEKO
Elliptic curves and Fibonacci numbers arising from Lindenmayer system with symbolic computations

MI2009-22 Eiji ONODERA
A remark on the global existence of a third order dispersive flow into locally Hermi-
tian symmetric spaces

MI2009-23 Stjepan LUGOMER & Yasuhide FUKUMOTO
Generation of ribbons, helicoids and complex scherk surface in laser-matter Interac-
tions

MI2009-24 Yu KAWAKAMI
Recent progress in value distribution of the hyperbolic Gauss map

MI2009-25 Takehiko KINOSHITA & Mitsuhiro T. NAKAO
On very accurate enclosure of the optimal constant in the a priori error estimates for H^2_0-projection

MI2009-26 Manabu YOSHIDA
Ramification of local fields and Fontaine’s property (Pm)

MI2009-27 Yu KAWAKAMI
Value distribution of the hyperbolic Gauss maps for flat fronts in hyperbolic three-
space

MI2009-28 Masahisa TABATA
Numerical simulation of fluid movement in an hourglass by an energy-stable finite element scheme

MI2009-29 Yoshiyuki KAGEI & Yasunori MAEKAWA
Asymptotic behaviors of solutions to evolution equations in the presence of translation and scaling invariance
MI2009-30 Yoshiyuki KAGEI & Yasunori MAEKAWA
On asymptotic behaviors of solutions to parabolic systems modelling chemotaxis

MI2009-31 Masato WAKAYAMA & Yoshinori YAMASAKI
Hecke’s zeros and higher depth determinants

MI2009-32 Olivier PIRONNEAU & Masahisa TABATA
Stability and convergence of a Galerkin-characteristics finite element scheme of lumped mass type

MI2009-33 Chikashi ARITA
Queueing process with excluded-volume effect

MI2009-34 Kenji KAJIWARA, Nobutaka NAKAZONO & Teruhisa TSUDA
Projective reduction of the discrete Painlevé system of type($A_2 + A_1$)\((1)\)

MI2009-35 Yosuke MIZUYAMA, Takamasa SHINDE, Masahisa TABATA & Daisuke TAGAMI
Finite element computation for scattering problems of micro-hologram using DtN map

MI2009-36 Reiichiro KAWAI & Hiroki MASUDA
Exact simulation of finite variation tempered stable Ornstein-Uhlenbeck processes

MI2009-37 Hiroki MASUDA
On statistical aspects in calibrating a geometric skewed stable asset price model

MI2010-1 Hiroki MASUDA
Approximate self-weighted LAD estimation of discretely observed ergodic Ornstein-Uhlenbeck processes

MI2010-2 Reiichiro KAWAI & Hiroki MASUDA
Infinite variation tempered stable Ornstein-Uhlenbeck processes with discrete observations

MI2010-3 Kei HIROSE, Shuichi KAWANO, Daisuke MIIKE & Sadanori KONISHI
Hyper-parameter selection in Bayesian structural equation models

MI2010-4 Nobuyuki IKEDA & Setsuo TANIGUCHI
The Itô-Nisio theorem, quadratic Wiener functionals, and 1-solitons

MI2010-5 Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling and detecting change point via the relevance vector machine

MI2010-6 Shuichi KAWANO, Toshihiro MISUMI & Sadanori KONISHI
Semi-supervised logistic discrimination via graph-based regularization

MI2010-7 Teruhisa TSUDA
UC hierarchy and monodromy preserving deformation

MI2010-8 Takahiro ITÔ
Abstract collision systems on groups
MI2010-9 Hiroshi YOSHIDA, Kinji KIMURA, Naoki YOSHIDA, Junko TANAKA & Yoshihiro MIWA
An algebraic approach to underdetermined experiments

MI2010-10 Kei HIROSE & Sadanori KONISHI
Variable selection via the grouped weighted lasso for factor analysis models

MI2010-11 Katsusuke NABESHIMA & Hiroshi YOSHIDA
Derivation of specific conditions with Comprehensive Groebner Systems

MI2010-12 Yoshiyuki KAGEI, Yu NAGAFUCHI & Takeshi SUDOU
Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Poiseuille type flow

MI2010-13 Reiichiro KAWAI & Hiroki MASUDA
On simulation of tempered stable random variates

MI2010-14 Yoshiyasu OZEKI
Non-existence of certain Galois representations with a uniform tame inertia weight

MI2010-15 Me Me NAING & Yasuhide FUKUMOTO
Local Instability of a Rotating Flow Driven by Precession of Arbitrary Frequency

MI2010-16 Yu KAWAKAMI & Daisuke NAKAJO
The value distribution of the Gauss map of improper affine spheres

MI2010-17 Kazunori YASUTAKE
On the classification of rank 2 almost Fano bundles on projective space

MI2010-18 Toshimitsu TAKAESU
Scaling limits for the system of semi-relativistic particles coupled to a scalar bose field

MI2010-19 Reiichiro KAWAI & Hiroki MASUDA
Local asymptotic normality for normal inverse Gaussian Lévy processes with high-frequency sampling

MI2010-20 Yasuhide FUKUMOTO, Makoto HIROTA & Youichi MIE
Lagrangian approach to weakly nonlinear stability of an elliptical flow

MI2010-21 Hiroki MASUDA
Approximate quadratic estimating function for discretely observed Lévy driven SDEs with application to a noise normality test

MI2010-22 Toshimitsu TAKAESU
A Generalized Scaling Limit and its Application to the Semi-Relativistic Particles System Coupled to a Bose Field with Removing Ultraviolet Cutoffs

MI2010-23 Takahiro ITO, Mitsuhiko FUJIO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Composition, union and division of cellular automata on groups

MI2010-24 Toshimitsu TAKAESU
A Hardy’s Uncertainty Principle Lemma in Weak Commutation Relations of Heisenberg-Lie Algebra
MI2010-25 Toshimitsu TAKAESU
On the Essential Self-Adjointness of Anti-Commutative Operators

MI2010-26 Reiichiro KAWAI & Hiroki MASUDA
On the local asymptotic behavior of the likelihood function for Meixner Lévy processes under high-frequency sampling

MI2010-27 Chikashi ARITA & Daichi YANAGISAWA
Exclusive Queueing Process with Discrete Time

MI2010-28 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA & Yasuhiro OHTA
Motion and Bäcklund transformations of discrete plane curves

MI2010-29 Takanori YASUDA, Masaya YASUDA, Takeshi SHIMOYAMA & Jun KOGURE
On the Number of the Pairing-friendly Curves

MI2010-30 Chikashi ARITA & Kohei MOTEGI
Spin-spin correlation functions of the q-VBS state of an integer spin model

MI2010-31 Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling and spike detection via Gaussian basis expansions

MI2010-32 Nobutaka NAKAZONO
Hypergeometric τ functions of the q-Painlevé systems of type $(A_2 + A_1)^{(1)}$

MI2010-33 Yoshiyuki KAGEI
Global existence of solutions to the compressible Navier-Stokes equation around parallel flows

MI2010-34 Nobushige KUROKAWA, Masato WAKAYAMA & Yoshinori YAMASAKI
Milnor-Selberg zeta functions and zeta regularizations

MI2010-35 Kissani PERERA & Yoshihiro MIZOGUCHI
Laplacian energy of directed graphs and minimizing maximum outdegree algorithms

MI2010-36 Takanori YASUDA
CAP representations of inner forms of $Sp(4)$ with respect to Klingen parabolic subgroup

MI2010-37 Chikashi ARITA & Andreas SCHADSCHNEIDER
Dynamical analysis of the exclusive queueing process

MI2011-1 Yasuhide FUKUMOTO & Alexander B. SAMOKHIN
Singular electromagnetic modes in an anisotropic medium

MI2011-2 Hiroki KONDO, Shingo SAITO & Setsuo TANIGUCHI
Asymptotic tail dependence of the normal copula

MI2011-3 Takehiro HIROTSU, Hiroki KONDO, Shingo SAITO, Takuya SATO, Tatsushi TANAKA & Setsuo TANIGUCHI
Anderson-Darling test and the Malliavin calculus

MI2011-4 Hiroshi INOUE, Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling via Compressed Sensing
MI2011-5 Hiroshi INOUE
Implications in Compressed Sensing and the Restricted Isometry Property

MI2011-6 Daeju KIM & Sadanori KONISHI
Predictive information criterion for nonlinear regression model based on basis expansion methods

MI2011-7 Shohei TATEISHI, Chiaki KINJYO & Sadanori KONISHI
Group variable selection via relevance vector machine

MI2011-8 Jan BREZINA & Yoshiyuki KAGEI
Decay properties of solutions to the linearized compressible Navier-Stokes equation around time-periodic parallel flow
Group variable selection via relevance vector machine

MI2011-9 Chikashi ARITA, Arvind AYYER, Kirone MALLICK & Sylvain PROLHAC
Recursive structures in the multispecies TASEP

MI2011-10 Kazunori YASUTAKE
On projective space bundle with nef normalized tautological line bundle

MI2011-11 Hisashi ANDO, Mike HAY, Kenji KAJIWARA & Tetsu MASUDA
An explicit formula for the discrete power function associated with circle patterns of Schramm type

MI2011-12 Yoshiyuki KAGEI
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a parallel flow

MI2011-13 Vladimír CHALUPECKÝ & Adrian MUNTEAN
Semi-discrete finite difference multiscale scheme for a concrete corrosion model: approximation estimates and convergence

MI2011-14 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA & Yasuhiro OHTA
Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves

MI2011-15 Hiroshi INOUE
A generalization of restricted isometry property and applications to compressed sensing

MI2011-16 Yu KAWAKAMI
A ramification theorem for the ratio of canonical forms of flat surfaces in hyperbolic three-space

MI2011-17 Naoyuki KAMIYAMA
Matroid intersection with priority constraints

MI2012-1 Kazufumi KIMOTO & Masato WAKAYAMA
Spectrum of non-commutative harmonic oscillators and residual modular forms

MI2012-2 Hiroki MASUDA
Mighty convergence of the Gaussian quasi-likelihood random fields for ergodic Levy driven SDE observed at high frequency
MI2012-3 Hiroshi INOUE
A Weak RIP of theory of compressed sensing and LASSO

MI2012-4 Yasuhide FUKUMOTO & Youich MIE
Hamiltonian bifurcation theory for a rotating flow subject to elliptic straining field

MI2012-5 Yu KAWAKAMI
On the maximal number of exceptional values of Gauss maps for various classes of surfaces

MI2012-6 Marcio GAMEIRO, Yasuaki HIRAOKA, Shunsuke IZUMI, Miroslav KRAMAR, Konstantin MISCHAIKOW & Vidit NANDA
Topological Measurement of Protein Compressibility via Persistence Diagrams

MI2012-7 Nobutaka NAKAZONO & Seiji NISHIOKA
Solutions to a q-analog of Painlevé III equation of type $D_7^{(1)}$

MI2012-8 Naoyuki KAMIYAMA
A new approach to the Pareto stable matching problem

MI2012-9 Jan BREZINA & Yoshiyuki KAGEI
Spectral properties of the linearized compressible Navier-Stokes equation around time-periodic parallel flow

MI2012-10 Jan BREZINA
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a time-periodic parallel flow

MI2012-11 Daeju KIM, Shuichi KAWANO & Yoshiyuki NINOMIYA
Adaptive basis expansion via the extended fused lasso

MI2012-12 Masato WAKAYAMA
On simplicity of the lowest eigenvalue of non-commutative harmonic oscillators

MI2012-13 Masatoshi OKITA
On the convergence rates for the compressible Navier-Stokes equations with potential force

MI2013-1 Abduuwali PAERHATI & Yasuhide FUKUMOTO
A Counter-example to Thomson-Tait-Chetayev’s Theorem

MI2013-2 Yasuhide FUKUMOTO & Hirofumi SAKUMA
A unified view of topological invariants of barotropic and baroclinic fluids and their application to formal stability analysis of three-dimensional ideal gas flows

MI2013-3 Hiroki MASUDA
Asymptotics for functionals of self-normalized residuals of discretely observed stochastic processes

MI2013-4 Naoyuki KAMIYAMA
On Counting Output Patterns of Logic Circuits

MI2013-5 Hiroshi INOUE
RIPless Theory for Compressed Sensing
MI2013-6 Hiroshi INOUE
Improved bounds on Restricted isometry for compressed sensing

MI2013-7 Hidetoshi MATSUI
Variable and boundary selection for functional data via multiclass logistic regression modeling

MI2013-8 Hidetoshi MATSUI
Variable selection for varying coefficient models with the sparse regularization

MI2013-9 Naoyuki KAMIYAMA
Packing Arborescences in Acyclic Temporal Networks

MI2013-10 Masato WAKAYAMA
Equivalence between the eigenvalue problem of non-commutative harmonic oscillators and existence of holomorphic solutions of Heun’s differential equations, eigenstates degeneration, and Rabi’s model

MI2013-11 Masatoshi OKITA
Optimal decay rate for strong solutions in critical spaces to the compressible Navier-Stokes equations

MI2013-12 Shuichi KAWANO, Ibuki HOSHINA, Kazuki MATSUDA & Sadanori KONISHI
Predictive model selection criteria for Bayesian lasso

MI2013-13 Hayato CHIBA
The First Painlevé Equation on the Weighted Projective Space

MI2013-14 Hidetoshi MATSUI
Variable selection for functional linear models with functional predictors and a functional response

MI2013-15 Naoyuki KAMIYAMA
The Fault-Tolerant Facility Location Problem with Submodular Penalties

MI2013-16 Hidetoshi MATSUI
Selection of classification boundaries using the logistic regression

MI2014-1 Naoyuki KAMIYAMA
Popular Matchings under Matroid Constraints

MI2014-2 Yasuhide FUKUMOTO & Youichi MIE
Lagrangian approach to weakly nonlinear interaction of Kelvin waves and a symmetry-breaking bifurcation of a rotating flow

MI2014-3 Reika AOYAMA
Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Parallel flow in a cylindrical domain

MI2014-4 Naoyuki KAMIYAMA
The Popular Condensation Problem under Matroid Constraints
MI2014-5 Yoshiyuki KAGEI & Kazuyuki TSUDA
 Existence and stability of time periodic solution to the compressible Navier-Stokes equation for time periodic external force with symmetry

MI2014-6 This paper was withdrawn by the authors.

MI2014-7 Masatoshi OKITA
 On decay estimate of strong solutions in critical spaces for the compressible Navier-Stokes equations

MI2014-8 Rong ZOU & Yasuhide FUKUMOTO
 Local stability analysis of azimuthal magnetorotational instability of ideal MHD flows

MI2014-9 Yoshiyuki KAGEI & Naoki MAKIO
 Spectral properties of the linearized semigroup of the compressible Navier-Stokes equation on a periodic layer

MI2014-10 Kazuyuki TSUDA
 On the existence and stability of time periodic solution to the compressible Navier-Stokes equation on the whole space

MI2014-11 Yoshiyuki KAGEI & Takaaki NISHIDA
 Instability of plane Poiseuille flow in viscous compressible gas

MI2014-12 Chien-Chung HUANG, Naonori KAKIMURA & Naoyuki KAMIYAMA
 Exact and approximation algorithms for weighted matroid intersection

MI2014-13 Yusuke SHIMIZU
 Moment convergence of regularized least-squares estimator for linear regression model

MI2015-1 Hidetoshi MATSUI
 Sparse regularization for multivariate linear models for functional data

MI2015-2 Reika AOYAMA & Yoshiyuki KAGEI
 Spectral properties of the semigroup for the linearized compressible Navier-Stokes equation around a parallel flow in a cylindrical domain