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Abstract

This lecture provides a survey of the progress in mathematical stud-
ies of incompressible viscous fluid motion in the exterior of a rotating
obstacle. Our interest is focussed on the existence, stability and asymp-
totic profile of the solution.

1 Introduction

Let us consider the motion of an incompressible viscous fluid, which is
governed by the well-known Navier-Stokes system, in an exterior domain
D ⊂ R3 with smooth boundary ∂D. The case where the obstacle (≡ R3\D),
which consists of finite number of rigid bodies, moves in a prescribed way
is of particular interest. In his series of famous papers, Robert Finn con-
sidered the problem with translating bodies and started its mathematical
analysis. In this case we know rich results including qualitative behaviors
of flows inside/outside wake region. We refer to [9], [10], [29], [31], [4], [33]
and the references therein. When the rotation of the obstacle was also taken
into account, however, few mathematical results were available in the 20th
century and our knowledge of the motion of the fluid was far from complete.
In order to understand the effect of rotation mathematically, in this lecture,
we concentrate ourselves on the purely rotating problem without translation
of the obstacle. In the reference frame, linear partial differential operator
which appears in the reduced equation is

L = −∆− (ω × x) · ∇+ ω×, (1.1)
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see (1.3), where ω ∈ R3 \ {0} is a constant angular velocity of the obstacle
and × stands for the usual exterior product. What is interesting is the
presence of the drift operator (ω×x) ·∇ with unbounded coefficient because
this is no longer subordinate to the Laplace operator even though |ω| is
small. In fact, when we consider the operator L in the usual Lebesgue space
Lq(R

3), 1 < q < ∞, then the spectrum of −L is given as follows and does
not depend on q ∈ (1,∞) ([7], [8]):

σ(−L) = {λ = µ+ ik|ω|; µ ≤ 0, k ∈ Z}, i =
√
−1, (1.2)

from which one can actually find hyperbolic effect of the operator (ω×x) ·∇.
The picture of the spectrum concludes that the semigroup (2.7) generated
by the operator −L is never analytic on Lq(R

3) unlike the heat semigroup
(2.8), and this is a remarkable point of the problem under consideration.

In the last several years, however, we have overcome the difficulty above
to make progress in studies of:

(i) the existence of a unique steady Navier-Stokes flow, denoted by us,
which decays like 1/|x| at infinity;

(ii) the stability of the steady flow us in the sense that a unique unsteady
Navier-Stokes flow exists globally in time and goes to us as t → ∞
whenever initial disturbance is small;

(iii) the asymptotic profile of the steady flow us for |x| → ∞.

All of them are proved for small angular velocity ω. We note that the steady
flow in the reference frame corresponds to the time-periodic flow with period
2π/|ω| in the original frame, see (1.5). For the proof of the existence of a
unique solution for all time t ≥ 0, as usual, the first step is to find a basic
flow around which the global solution might be constructed and, especially
for the exterior problem, a steady flow with nice summability at infinity is
a good candidate for the basic flow. So, the step (i) should be the starting
point for us. The next step toward (ii) is the spectral analysis of the operator
L given by (1.1). What is crucial is that, in spite of hyperbolic effect of the
drift term (ω×x) ·∇u such as (1.2), the semigroup generated by −(Lu+∇p)
over exterior domains, see (2.1), enjoys both a certain smoothing action near
t = 0 ([20] in L2, [17] in Lq) and decay properties as t → ∞ of parabolic
type (so-called Lp-Lq type, see [22]). As for (i) and (ii), after getting around
special difficulty of the operator L, the final statements are eventually more
or less similar to those for the usual Navier-Stokes flow (ω = 0), while we
deduce a different profile from the case ω = 0 in (iii). We catch anisotropic
decay structure for |x| → ∞ arising from effect of rotation of the obstacle;
in fact, it is made clear that the rotating axis plays an important role as
preferred direction.
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Since the Navier-Stokes equation is rotationally invariant, without loss
of generality, the rotating axis of the obstacle may be assumed to be y3-axis
so that the angular velocity is given by ω = ae3, where a ∈ R \ {0} is a
constant and e3 = (0, 0, 1)T . In what follows all vectors are column ones
and superscript-T denotes the transpose. The unknown velocity v(y, t) =
(v1, v2, v3)

T and pressure π(y, t) obey the Navier-Stokes equation

∂tv + v · ∇v = ∆v −∇π, div v = 0

for y ∈ D(t) subject to the boundary condition

v|∂D(t) = ω × y ≡ a(−y2, y1, 0)
T , v → 0 as |y| → ∞.

Note that we have imposed the usual no-slip boundary condition on the
surface ∂D(t) since ω × y is the rotating velocity of the obstacle. Here, the
domain D(t) occupied by the fluid at time t and its boundary ∂D(t) are
given by

D(t) = {y = O(at)x; x ∈ D}, ∂D(t) = {y = O(at)x; x ∈ ∂D},

where

O(t) =




cos t − sin t 0
sin t cos t 0
0 0 1


 .

We take the coordinate system attached to the obstacle to reduce the prob-
lem above to

∂tu+ u · ∇u = ∆u+ (ω × x) · ∇u− ω × u−∇p, div u = 0 (1.3)

in D subject to

u|∂D = ω × x, u→ 0 as |x| → ∞, (1.4)

where

u(x, t) = (u1, u2, u3)
T = O(at)T v(O(at)x, t), p(x, t) = π(O(at)x, t), (1.5)

see [2], [20], [13].
Mathematical analysis of the initial value problem for (1.3)–(1.4) was be-

gun first by Wolfgang Borchers, who proved the existence of weak solutions;
indeed, the only literature was his Habilitationsschrift [2] when I started
the study of this problem (Professor Tetsuro Miyakawa kindly informed me
of his result). As in the usual Navier-Stokes theory (traced back to Jean
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Leray), we don’t know the uniqueness of weak solutions. I constructed a
unique solution locally in time within the L2-theory ([20]) when the initial
data possess regularity to some extent as in Fujita and Kato [11]. In order
to remove the regularity of them, as was done by Giga and Miyakawa [18]
and also by Kato [24], we need the Lq-theory. But the generation of the
semigroup in Lq had been hard. Because, generally speaking, the Yosida-
Hille theorem is not so useful when the semigroup is neither contractive nor
analytic (even the usual Stokes semigroup is never contractive on account of
the pressure unless q = 2). In [17] Geissert, Heck and Hieber succeeded in
its proof; indeed, they constructed the semigroup concretely and then made
sure of the domain of the generator finally, see (2.1). Later on, Shibata [34]
gave another construction of the semigroup.

In [14] Galdi first proved that the steady problem

−∆u− (ω × x) · ∇u+ ω × u+∇p+ u · ∇u = 0, div u = 0 (1.6)

in D subject to (1.4) has a unique solution (u, p) which satisfies

|u(x)| ≤ C|ω|
|x| , |∇u(x)|+ |p(x)| ≤ C|ω|

|x|2 (1.7)

for large |x| provided |ω| is small enough. Later on, in [5] another outlook
on his pointwise decay (1.7) was provided in terms of weak-Lq spaces:

u ∈ L3,∞(D), (∇u, p) ∈ L3/2,∞(D). (1.8)

The proof was based on some Lq-estimates ([6], [21]) for the operator L in
the whole space R3 with the aid of tools from harmonic analysis together
with cut-off procedure developed by [35]. The class (1.8) or pointwise decay
(1.7) of the steady flow is important to deduce its stability, which has been
established by [15] and [22]. In the former it was shown that the disturbance
goes to zero in the Dirichlet norm without any rate, while in the latter some
definite convergence rates have been derived, see (2.3).

We finally address the leading term of (1.7), which decays exactly at
the rate 1/|x| so that the remaining term decays faster. It is proved that
the leading term is given by a member of the family of (−1)-homogeneous
solutions, found first by Landau [27] and revisited by Šverák [36], for the
usual Navier-Stokes equation

−∆u+∇p+ u · ∇u = 0, div u = 0 (x ∈ R3 \ {0}). (1.9)

Note that, for (1.9), (−1)-homogeneity is equivalent to self-similarity. It is
proved by [36] that the family of solutions constructed by Landau covers all
self-similar solutions of (1.9). Each member of this family is parameterized
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by vector about which it is axisymmetric. For the leading term of the flow
under consideration, this vector parameter is parallel to the angular velocity
ω. Therefore, this leading term satisfies also (1.6) in R3 \ {0} since the
additional two terms vanish, see (3.9). This study is inspired by the recent
work [26] due to Korolev and Šverák, in which the leading term of the usual
exterior Navier-Stokes flow for the case ω = 0 is provided; it is given by
another member of the same family as above and possesses symmetry about
the axis whose direction (vector parameter mentioned above) is the net force
(3.8) of the given flow.

We remark that the leading profile is the Oseen fundamental solution
(without effect of nonlinearity) when the obstacle is translating with con-
stant velocity, see for instance [4], on account of better decay property out-
side wake region behind the obstacle. In the case where both translation
and rotation of the obstacle are taken into account, a wake region was still
found by [16]. In this case as well, very probably, the leading profile comes
from the linear part unlike the purely rotating problem discussed in this
lecture.

The next section is devoted to the spectral analysis of the operator L
given by (1.1). In the final section we find the asymptotic profile of the
steady flow at infinity.

2 Spectral analysis of the operator L

The results of this section were obtained jointly with Yoshihiro Shibata
[22]. We adopt the same symbols for vector and scalar function spaces.
Let C∞

0 (D) consist of all C∞-functions with compact support in D. For
1 ≤ q ≤ ∞ and 0 ≤ k ∈ Z, we denote by W k

q (D), with W 0
q (D) = Lq(D), the

usual Lq-Sobolev space of order k. Let 1 < q < ∞ and 1 ≤ r ≤ ∞. Then
the Lorentz spaces are defined by

Lq,r(D) =
(
L1(D), L∞(D)

)
1−1/q,r

where (·, ·) is the real interpolation functor. It is well known that a measur-
able function f is in Lq,∞(D) if and only if

sup
σ>0

σ |{x ∈ D; |f(x)| > σ}|1/q <∞

and that Lq,∞(D) is the dual space of Lq/(q−1),1(D). Note that C∞
0 (D) is not

dense in Lq,∞(D). Let C∞
0,σ(D) be the class of all C∞

0 -vector fields f which
satisfy div f = 0 in D. For 1 < q <∞ we denote by Jq(D) the completion
of C∞

0,σ(D) in Lq(D). Then the Helmholtz decomposition of Lq-vector fields
holds, see [12], [30]:

Lq(D) = Jq(D)⊕ {∇π ∈ Lq(D);π ∈ Lq,loc(D)}.
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Let P denote the projection operator from Lq(D) onto Jq(D) associated
with the decomposition. Then the Stokes operator L with rotation effect is
defined by

D(L) = {u ∈ Jq(D) ∩W 2
q (D); u|∂D = 0, (ω × x) · ∇u ∈ Lq(D)},

Lu = PLu = −P [∆u+ (ω × x) · ∇u− ω × u].
(2.1)

It is proved by [17] and [34] that the operator −L generates a C0-semigroup
{T (t)}t≥0 on the space Jq(D), 1 < q <∞ (see also [19] for the case q = 2).
But this is not an analytic semigroup. In fact, Farwig, Nečasová and
Neustupa [7], [8] investigated the spectrum not only for the whole space
problem (1.2) but also for the exterior problem; the essential spectrum
σess(−L) is given by the RHS of (1.2) in Jq(D). Nevertheless, the semi-
group T (t) possesses smoothing effect such as (2.4) for t→ 0.

Let us be the solution to the steady problem (1.6) subject to (1.4) and
v the disturbance of us. In terms of the semigroup T (t), the equation which
v obeys is reduced to

v(t) = T (t)v0 −
∫ t

0
T (t− τ)P (us · ∇v + v · ∇us + v · ∇v)(τ) dτ, (2.2)

where v0 denotes the initial disturbance of us. The additional linear terms
with coefficient us in the class (1.8) can be treated as perturbation when
we essentially use the solenoidal Lorentz spaces Jq,r(D) as in Yamazaki [37],
where

Jq,r(D) =
(
Jq0(D), Jq1(D)

)
θ,r

with 1 < q0 < q < q1 < ∞, 1 ≤ r ≤ ∞ and 1/q = (1 − θ)/q0 + θ/q1. Note
that {T (t)}t≥0 is extended to the semigroup on the space Jq,r(D).

Theorem 2.1 Let us ∈ L3,∞(D) and v0 ∈ J3,∞(D).

1. There is a constant δ > 0 such that if

‖us‖L3,∞(D)
+ ‖v0‖L3,∞(D)

≤ δ,

then the equation (2.2) possesses a unique global solution

v ∈ BC ((0,∞); J3,∞(D)) with w∗–lim
t→0

v(t) = v0 in J3,∞(D).

2. Let 3 < q <∞. Then there is a constant δ̃(q) ∈ (0, δ] such that if

‖us‖L3,∞(D)
+ ‖v0‖L3,∞(D)

≤ δ̃(q),

6



then the solution v(t) obtained above enjoys

‖v(t)‖
Lr(D)

= O(t−1/2+3/2r) as t→∞ (2.3)

for every r ∈ (3, q).

What is essential for the proof of Theorem 2.1 is to establish the Lp-Lq

estimates of the semigroup T (t). In the following theorem, we have to take
care of the dependence of T (t) on the angular velocity ω = ae3, and thus we
write Ta(t).

Theorem 2.2 Suppose that

{
1 < p ≤ q ≤ ∞ (p 6= ∞) for j = 0,
1 < p ≤ q ≤ 3 for j = 1,

and let a0 > 0 be arbitrary. Set

κ =
3

2

(
1

p
− 1

q

)
.

Then there is a constant C = C(p, q, a0) > 0 such that

‖∇jTa(t)f‖Lq(D)
≤ Ct−j/2−κ‖f‖

Lp(D)
(2.4)

for all t > 0, f ∈ Jp(D) and ω with |ω| = |a| ≤ a0.

Estimate (2.4) with p = q concludes the uniform boundedness of the
semigroup in t on Jq(D), which was not shown in [17], while the semigroup
is contractive on J2(D), see [19]. The restriction q ≤ 3 for the gradient esti-
mate, which was first proved by Iwashita [23] for the case of the usual Stokes
semigroup (ω = 0), arises from the fact that the effect from the solution to
the whole space problem remains near the boundary. In fact, Maremonti and
Solonnikov [28] pointed out that one cannot avoid that restriction. In view
of their proof, this is also related to the decay structure of steady solutions.

The origin of strategy toward (2.4) based on spectral analysis together
with cut-off technique was found in [32] by Shibata for hyperbolic equation
with a dissipation term in exterior domains and, later on, the framework of
argument was well developed by Iwashita [23] and also by Kobayashi and
Shibata [25] for the Stokes and Oseen semigroups. We now fix R > 0 such
that R3 \ D ⊂ BR, and set DR = D ∩ BR. The most difficult step is to
derive the so-called local energy decay estimate

‖T (t)Pf‖
W1

q (DR)
≤ Ct−3/2‖f‖

Lq(D)
(t ≥ 1) (2.5)
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for all f ∈ Lq,[d](D), where 1 < q <∞ and

Lq,[d](D) = {f ∈ Lq(D); f(x) = 0 a.e. |x| ≥ d}, d > 0.

Indeed there is no relationship between the analyticity of semigroup and
local energy decay properties, but we have actually some difficulties caused
by lack of analyticity of T (t). For instance, we have no information about
the behavior of the resolvent (λI + L)−1 for |λ| → ∞ along the imaginary
axis, and thus it is no longer obvious to understand the representation of
the semigroup

T (t)Pf =
−1

2πit

∫ ∞

−∞
eiτ t∂τ (iτI + L)−1Pf dτ, (2.6)

which is formally obtained from the inverse Laplace transform of the resol-
vent when we shift the path of integration to the imaginary axis (λ = iτ)
after integration by parts with respect to λ.

The large time behavior of the semigroup T (t) is closely related to the
regularity for small λ of the resolvent (λI + L)−1. The first step is the
analysis of the resolvent problem

λu+ Lu+∇p = f, div u = 0 (x ∈ R3).

The solution, which we denote by AR3(λ)f , is described as the Laplace
transform of the semigroup

(S(t)f) (x) = O(at)T
(
et∆f

)
(O(at)x) (2.7)

in the whole space, where

(
et∆f

)
(x) = (G(·, t) ∗ f) (x), G(x, t) = (4πt)−3/2e−|x|

2/(4t). (2.8)

The Fourier transform of (2.7) is given by

̂(S(t)f)(ξ) = O(at)T e−|ξ|
2tf̂ (O(at)ξ) ,

and thus we have

u(x, λ) = (AR3(λ)f) (x)

=
1

(2π)3

∫ ∞

0

∫

R3

e−(λ+|ξ|2)teix·ξ O(at)T Π(O(at)ξ)f̂ (O(at)ξ) dξdt

=
1

(2π)3

∫ ∞

0

∫

R3

∫

R3

e−(λ+|ξ|2)tei(O(at)x−y)·ξ O(at)T Π(ξ)f(y) dydξdt

for Re λ ≥ 0 and f ∈ Lq(R
3), where Π(ξ) = I − ξ ⊗ ξ/|ξ|2. If in particular

f ∈ Lq,[d](R
3), then AR3(λ)f possesses a certain regularity in the space

W 2
q (BR). In fact, we find

∂λAR3(λ)f ∼ |λ− ika|−1/2, k = 0,±1
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near λ = 0,±ia and AR3(·)f is of class C1 on C+ \ {0,±ia} with values in
W 2

q (BR). Furthermore, we observe

∂2
λAR3(λ)f ∼ |λ− ika|−3/2, k = 0,±1

∂2
λAR3(λ)f ∼ |λ− ika|−1/2, k = ±2,±3

near Λ = {0,±ia,±2ia,±3ia} and AR3(·)f is of class C2 on C+ \ Λ with
values inW 2

q (BR). We know that each of ika is the end point of the spectrum
σ(−L), see (1.2). The observations above, however, tell us that the order
of singularity at λ = ika depends on k ∈ Z. Further, we can justify the
regularity C3/2 of the resolvent AR3(λ) in the sense that

∫ K

−K
‖(∂λAR3)(i(τ+h))f−(∂λAR3)(iτ)f‖

W2
q (BR)

dτ ≤ C|h|1/2‖f‖
Lq(R3)

(2.9)

for |h| ≤ 1 and f ∈ Lq,[d](R
3), where K > 0 is a fixed large number.

The analysis of the resolvent for large λ is also quite important in our
problem because of lack of analyticity of the semigroup. The main point is
that, by integration by parts with respect to t, the resolvent AR3(λ) can be
divided into two parts. The first term arising from t = 0 is something like
parabolic part, that is, its analytic continuation into a sectorial subset of
the left half complex plane is possible, while the second term decays rapidly
as |λ| → ∞ in C+, even along the imaginary axis. To be precise, given
arbitrary N ∈ N, we have the representation

(AR3(λ)f) (x)

=

N−1∑

k=0

Mk(λI −∆R3)−(k+1)PR3f(x)

+
1

(2π)3

∫ ∞

0

∫

R3

e−(λ+|ξ|2)teix·ξ

(λ+ |ξ|2)N O(at)T
[
M̃N (Πf̂)

]
(O(at)ξ) dξdt

in W 2
q (BR) for all f ∈ Lq,[d](R

3), where

M = (ω × x) · ∇ − ω×, M̃ = (ω × ξ) · ∇ξ − ω × .

Note the relation (M̂ψ)(ξ) = M̃ψ̂(ξ).
We next derive a representation of the resolvent (λI + L)−1 in exterior

domains. We employ a cut-off technique to construct a parametrix (v, π)
by use of resolvents in the whole space R3 and in the bounded domain
DR together with the Bogovskĭı operator ([1]) to recover the solenoidal
condition. By A(λ) we denote the linear mapping: f 7→ v(·, λ) = A(λ)f ,
where f is a given external force. The pair (v, π) should obey

(λ+ L)v +∇π = f +R(λ)f, div v = 0 (x ∈ D)
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subject to v|∂D = 0, where R(λ)f denotes the remainder term arising from
the cut-off procedure. The operator R(λ) is divided into two parts

R(λ) = R1 +R2(λ)

where R1 is independent of λ and consists of pressure in the whole space
R3 and λ-independent part (arising from the Helmholtz decomposition) of
pressure in the bounded domain DR. As usual, a compactness argument
implies the existence of the bounded inverse (I + R(λ))−1; however, the
behavior of (I + R(λ))−1 for large λ is not clear. We thus reconstruct this
inverse of the form

(I +R(λ))−1 =
[
I + (I +R1)

−1R2(λ)
]−1

(I +R1)
−1

=
∞∑

k=0

{
−(I +R1)

−1R2(λ)
}k

(I +R1)
−1

for large λ by using R2(λ) → 0 as |λ| → ∞. A key step is thus to show the
invertibility of I +R1, which is reduced to the uniqueness of the Helmholtz
decomposition. As a consequence, the operator norm of the inverse (I +
R(λ))−1 is uniformly bounded in λ; therefore, both the behavior for large λ
and the regularity for small λ of the resolvent

(λI + L)−1Pf = A(λ)(I +R(λ))−1f

are governed by those of the resolvent in the whole space R3. In fact, as
long as we take f from the space Lq,[d](D), we have the following behavior
of the resolvent:

‖∂j
λ(λI + L)−1Pf‖

W1
q (DR)

≤ C |λ|−j−1/2‖f‖
Lq(D)

, j = 0, 1, 2 (2.10)

in {λ ∈ C+; |λ| ≥ K}, where K > 0 is a fixed large number, and

‖∂λ(λI + L)−1Pf‖
W1

q (DR)
≤ C |λ− ika|−1/2‖f‖

Lq(D)
, k = 0,±1 (2.11)

in {λ ∈ C+; |λ − ika| ≤ |a|/4}. Moreover, one can justify the formula (2.6)
in the space W 1

q (DR) for f ∈ Lq,[d](D) as well as the C3/2-regularity of
(λI + L)−1P in the same sense as in (2.9). We now consider

∫ ∞

−∞
eiτ t∂τ (iτI + L)−1Pf dτ

in W 1
q (DR) and split it into integrals for large τ and for finite τ . Then the

former decays like t−1 that follows from (2.10) for j = 1, 2 by integration
by parts once more, while the latter decays like t−1/2 that follows from the
relationship between the regularity of a function and the decay property of
its inverse Fourier image; thus, we conclude (2.5).
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3 Asymptotic profile of the steady flow

The results of this section have been recently obtained jointly with Reinhard
Farwig (the paper is now in preparation). The first step should be the study
of the associated Stokes problem

−∆u− (ω × x) · ∇u+ ω × u+∇p = f, div u = 0 (3.1)

in D subject to (1.4). Even for this linear problem, it is no longer clear
what the leading term of the Stokes flow is. In addition, anisotropic decay
structure arising from effect of rotation must be observed at the level of the
linear problem. We thus intend to derive such structure from asymptotic
representation of the Stokes flow for |x| → ∞. The results obtained in
[5] and [21] suggest that the optimal rate of decay of the solution to (3.1)
is 1/|x| in general even though the external force is very nice such as, for
instance, f = div F with F ∈ C∞

0 (D)3×3. Theorem 3.1 below provides its
rigorous explanation when we look at the leading term. For the sake of
simplicity to catch the profile, the external force is of the form f = div F
with F ∈ C∞

0 (D)3×3, the restriction of F ∈ C∞
0 (R3)3×3 to D (although

divergence form is not needed). We will look for not only the leading term
(∼ 1/|x|) but also the second one (∼ 1/|x|2).

Theorem 3.1 Let ω = ae3 with a ∈ R \ {0}. Given f = div F with F ∈
C∞

0 (D)3×3, let (u, p) be the solution to (3.1) subject to (1.4). Then it is

represented as

u(x) = U1st(x) + U2nd(x) +

(
1 +

1

|a|

)
O

(
1

|x|3
)
,

p(x) = P1st(x) +O

(
1

|x|3
)

for |x| → ∞ with

U1st(x) =
1

8π

∫

∂D
(ν · (T + F ))3 dσy

(
e3
|x| +

x3x

|x|3
)

= ESt(x)




0
0∫

∂D(ν · (T + F ))3 dσy


 ,

U2nd(x) =
1

8π|x|3




α −β 0
β α 0
0 0 α







x1

x2

x3


− 3 (x⊗ x)

8π|x|5




α′

2 x1
α′

2 x2

α3x3




=
β(e3 × x)

8π|x|3 +
{
α−

3
(

α′

2 |x′|2 + α3x
2
3

)

|x|2
} x

8π|x|3 ,

11



P1st(x) =

∫

∂D
{(ν · (∆u)) y − pν + ν · F} dσy ·QSt(x).

Here, ν is the exterior unit normal to the boundary ∂D, the pair of

ESt(x) =
1

8π

(
1

|x|I +
x⊗ x

|x|3
)
, QSt(x) = ∇

( −1

4π|x|

)
=

x

4π|x|3 (3.2)

is the usual Stokes fundamental solution, I is the 3×3 unity matrix, x⊗x =
(xixj)1≤i,j≤3,

T = T (u, p) = ∇u+ (∇u)T − pI

is the Cauchy stress tensor, and

α = −
∫

∂D
y · (ν · (T + F )) dσy +

∫

D
trF dy = α′ + α3,

α′ = −
∫

∂D
y′ · (ν · (T + F ))′ dσy +

∫

D
(F11 + F22) dy,

α3 = −
∫

∂D
y3(ν · (T + F ))3 dσy +

∫

D
F33 dy,

β = e3 ·
∫

∂D
y × (ν · (T + F )) dσy +

∫

D
(F12 − F21) dy,

ν · (T + F ) =
(
(ν · (T + F ))′, (ν · (T + F ))3

)T

x = (x′, x3)
T , y = (y′, y3)

T .

The proof relis upon a detailed analysis of the fundamental solution
{Γ(x, y), Q(x, y)} of the equation (3.1) in the whole space R3. In terms of
the heat kernel G(x, t), see (2.7)–(2.8), we find

Γ(x, y) = Γ0(x, y) + Γ1(x, y)

with

Γ0(x, y) =

∫ ∞

0
O(at)TG(O(at)x− y, t) dt, (3.3)

Γ1(x, y) = −
∫ ∞

0

∫ s

0
∇x∇y[G(O(at)x − y, s)] dtds

=

∫ ∞

0
(4πs)−3/2

∫ s

0
e−|O(at)x−y|2/(4s)

{(
x−O(at)T y

)
⊗ (O(at)x− y)

4s2
− 1

2s
O(at)T

}
dtds,

(3.4)

12



and also

Q(x, y) = ∇y
1

4π|x− y| = QSt(x− y),

see (3.2).
By Theorem 3.1 we know what kind of effect on the profile the rotation

of the body causes. For the Stokes flow, the leading profile is the third
column vector of the usual Stokes fundamental solution (3.2) and possesses

(i) the symmetry about the rotating axis (x3-axis);

(ii) (−1)-homogeneity.

We are thus actually informed of the important role of the rotating axis
and this knowledge is useful in finding the leading term of the Navier-Stokes
flow. Furthermore, the quantity which controls the rate of decay is e3 · N ,
where

N =

∫

∂D
ν · T (u, p) dσ (3.5)

is the net force (case F = 0 in Theorem 3.1). Thus, it is reasonable to expect
that the leading term U of the Navier-Stokes flow for (1.6) subject to (1.4)
still keeps the properties (i), (ii) above and solves

−∆U−(ω×x) ·∇U+ω×U+∇P+U ·∇U = (e3 ·N) e3δ, div U = 0 (3.6)

in D′(R3), where δ denotes the Dirac measure at 0. The present section
concludes that this is correct. Here, we should note the relation

e3 ·N = e3 · Ñ , (3.7)

which is the consequence of u|∂D = ω × x together with e3 · (ω × x) = 0,
where

Ñ =

∫

∂D
ν · {T (u, p)− u⊗ u} dσ. (3.8)

Note also that

(e3 × x) · ∇U − e3 × U = 0 (3.9)

holds for all vector fields which are symmetric about x3-axis. Further, (3.9)
holds in D′(R3) when U ∼ 1/|x| around x = 0. Thus the candidate above
for the leading term solves (3.11) with k = e3 ·N and, due to [36], it must
be a member of the family of the Landau solutions explained below.

13



Let b ∈ R3 be a prescribed vector, that we call the Landau parameter.
Then, among nontrivial smooth solutions of (1.9), Landau [27] found an
exact solution, called the Landau solution, which satisfies:

• the symmetry about the axis Rb;
• the homogeneity

u(x) =
1

|x| u
(
x

|x|

)
, p(x) =

1

|x|2 p
(
x

|x|

)
;

• −∆u+∇p+ u · ∇u = bδ in D′(R3).

When b is parallel to e3, the Landau solution is of the form





u(x) =
2

|x|
[ cσ3 − 1

(c− σ3)2
σ +

1

c− σ3
e3

]
,

p(x) =
4(cσ3 − 1)

|x|2(c− σ3)2

(3.10)

with parameter c ∈ (−∞,−1) ∪ (1,∞), where σ = x/|x|. Further, (u, p)
satisfies

−∆u+∇p+ u · ∇u = ke3δ, div u = 0 (3.11)

in D′(R3), where k is given by

k = k(c) =
8πc

3(c2 − 1)

(
2 + 6c2 − 3c(c2 − 1) log

c+ 1

c− 1

)
. (3.12)

For this calculation we refer to [3]. Since the function k(·) is monotonically
decreasing on each of (−∞,−1) and (1,∞), and fulfills

k(c) → 0 (|c| → ∞); k(c) → −∞ (c→ −1); k(c) →∞ (c→ 1),

there is a unique c ∈ (−∞,−1) ∪ (1,∞) such that k(c) = k for every k ∈
R \ {0}. When k = 0, we may understand (u, p) = (0, 0) as the solution
(3.10) with |c| → ∞.

Now, given smooth solution (u, p) of the Navier-Stokes problem (1.6)
with (1.4), we take N and Ñ as in (3.5) and (3.8). Let (U,P ) be the Landau
solution with the Landau parameter

b = (e3 ·N)e3 = (e3 · Ñ)e3,

see (3.7). Namely, (U,P ) is given by (3.10) with c which is determined by
k(c) = e3 ·N (it is the trivial solution in case e3 ·N = 0), where k(·) is as in
(3.12). By (3.9), (U,P ) solves (3.6) in D ′(R3) as well. We are in a position
to give our result.
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Theorem 3.2 Let ω = ae3 with a ∈ R \ {0}. For each q0 ∈ (3/2, 3) there

exists a constant η = η(q0) > 0 such that if u is a smooth solution to (1.6)
subject to (1.4) and satisfies

sup
x∈D

|x||u(x)| + |e3 ·N | ≤ η,

then, for every q ∈ (q0, 3), we have

u− U |D ∈ Lq(D), ‖u− U‖
Lq(D)

≤ C(|a|−3/q+1 + 1) (3.13)

with some C = C(q) > 0, where U is the Landau solution as above.

This theorem tells us that the remainder u−U possesses better summa-
bilty (which suggests the pointwise decay 1/|x|2) at infinity; in this sense, the
Landau solution U is the leading term of small solution u. Because the lead-
ing term of the usual Navier-Stokes flow (ω = 0) found by Korolev-Šverák
[26] is different (it is the Landau solution with b = Ñ), it is reasonable that
our remainder possesses singular behavior for a→ 0 as in (3.13).
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[8] R. Farwig, Š. Nečasová and J. Neustupa, On the essential spectrum of a Stokes-
type operator arising from flow around a rotating body in the L

q-framework, Kyoto
Conference on the Navier-Stokes Equations and their Applications, RIMS Kôkyûroku
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