
Journal of Math-for-Industry, Vol. 3 (2011B-4), pp. 113–117

A案 B案

D案 E案 F案

C案

Non-existence of elliptic curves with everywhere good reduction over
some real quadratic fields

Shun’ichi Yokoyama and Yu Shimasaki

Received on August 25, 2011

Abstract. We prove the non-existence of elliptic curves having good reduction everywhere over
some real quadratic fields. These results of computations give best-possible data including structures
of Mordell-Weil groups over real quadratic fields Q(

√
m) up to 100 via two-descent.
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1. Introduction

Throughout this paper, let Km be the real quadratic field
Q(

√
m) where m is a square-free positive integer with

m ≤ 100 and OKm the ring of integers of Km. We al-
ready know the following results concerning elliptic curves
with everywhere good reduction over real quadratic fields
([2, 4, 5, 6, 7, 8, 12, 13, 14, 18, 25]):

Theorem 1.1. 1. There are no elliptic curves with
everywhere good reduction over Km if
m = 2, 3, 5, 10, 11, 13, 15, 17, 19, 21, 23, 30, 31, 34, 35, 39,
42, 47, 53, 55, 57, 58, 61, 66, 69, 70, 73, 74, 78, 82, 83, 85,
89, 93, 94, 95 and 97.

2. The elliptic curves with everywhere good reduc-
tion over Km are determined completely for m =
6, 7, 14, 22, 29, 33, 37, 38, 41, 65 and 77.

3. There are elliptic curves with everywhere good reduc-
tion over Km if m = 26, 79 and 86 (cf. [4, 16] and
Cremona’s table [3]).

In this paper, we prove the non-existence of elliptic
curves with everywhere good reduction over three real
quadratic fields not appearing in Theorem 1.1. Here is
the main theorem:

Theorem 1.2. If m = 43, 46 and 59, there are no elliptic
curves with everywhere good reduction over Km.

The following cases are still unknown whether an elliptic
curve with everywhere good reduction over Km exists or
not:

m = 51, 62, 67, 71, 87, 91.

For three of them, we prove the following conditional (but
best-possible) result:

Theorem 1.3. If m = 62, 67 and 71, there are no elliptic
curves with everywhere good reduction over Km which have
cubic discriminant.

Remark 1.4. In some cases (e.g. m = 77, cf. [8]), we can
prove that there exists an elliptic curve with everywhere
good reduction over Km having cubic discriminant.

Our strategy for the proof is close to that of T. Ka-
gawa [8]. However, we use different kinds of computer soft-
wares and computational techniques. In [8], all computa-
tions were carried out by using KASH [11] and SIMATH
[21]. Unfortunately, development of SIMATH had already
stopped and some fatal bugs (Tate’s algorithm over num-
ber fields, for example) remain even now. Thus we switched
environment of computation completely and started from
a check experiment of Kagawa’s results by using Magma
[15], Pari-GP [17] and Sage [19].
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2. Setup

In this section, we introduce the strategy to prove our re-
sults. Henceforth, we assume that the class number of Km

is 1 and every elliptic curve E with everywhere good re-
duction over Km has no Km-rational point of order 2 be-
cause Comalada [1] determines all admissible curves (= el-
liptic curves having good reduction everywhere and a Km-
rational point of order 2) defined over Km with m ≤ 100
and such curves do not exist over Km which we consider
in this paper. First we use the following result:

Proposition 2.1 (Setzer [20]). Let E be an elliptic curve
over Km. If the class number of Km is prime to 6 then E
has a global minimal model.
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Let E be an elliptic curve with everywhere good reduc-
tion over Km. By Proposition 2.1, E has a global minimal
model

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

with coefficients ai ∈ OKm (i = 1, 2, 3, 4, 6). The discrimi-
nant of E (denoted by ∆(E)) is

∆(E) =
c3
4 − c2

6

1728

where c4, c6 ∈ OKm are, as in [24] (Chapter III, p.42),
written as polynomials in the ai’s with integer coefficients.
Moreover, the following conditions are equivalent (cf. [24],
Chapter VII, Prop. 5.1):

• E has everywhere good reduction over Km,

• ∆(E) ∈ O×
Km

.

In our case, all elements of O×
Km

are written in the form
±εn where ε is a fundamental unit of Km (let us fix ε
for each m). Thus to determine the elliptic curves with
everywhere good reduction over Km, we shall compute the
sets

E±
n (OKm) =

{
(x, y) ∈ OKm ×OKm | y2 = x3 ± 1728εn

}
with 0 ≤ n < 12. However, the set of coefficients
(a1, a2, a3, a4, a6) ∈ O⊕5

Km
, which gives rise to (c4, c6) ∈

O⊕2
Km

, does not necessarily exist. Therefore, we check
whether the curve

EC : y2 = x3 − 27c4x − 54c6, (1)

which is isomorphic to E over Km, has trivial conductor
for each (c4, c6) ∈ E±

n (OKm).
Actually, it is very hard to compute all E±

n (OKm) be-
cause of the limitation of efficiency of equipments. To re-
duce the amount of computation, we show that some val-
ues of n are irrelevant by using Kagawa’s results. In [8],
Kagawa shows a criterion whether the discriminant of an
elliptic curve with everywhere good reduction over Km is
a cube in Km:

Lemma 2.2 ([8], Prop. 1). If the following five conditions
hold, then the discriminant of every elliptic curve with ev-
erywhere good reduction over Km is a cube in Km:

1. The class number of Km is prime to 6;

2. Km/Q is unramified at 3;

3. The class number of Km(
√
−3) is prime to 3;

4. The class number of Km( 3
√

ε) is odd;

5. For some prime ideal p of Km dividing 3, the congru-
ence X3 ≡ ε (mod p2) does not have a solution in
OKm .

Using the criterion, Kagawa shows the following:

Lemma 2.3 ([10]). If m = 46 or 59, every elliptic curve
with everywhere good reduction over Km has a global min-
imal model whose discriminant is a cube in Km.

Therefore, we have ∆(E) = ±ε3n for some n ∈ Z.
By applying the next lemma, we can further discard some

cases:

Lemma 2.4 ([8], Prop. 4). Let E be an elliptic
curve defined over Km. If E has good reduction out-
side 2 and has no Km-rational point of order 2, then
Km(E[2])/Km(

√
∆(E)) is a cyclic cubic extension unram-

ified outside 2. In particular, the ray class number of
Km(

√
∆(E)) modulo

∏
p|2 p is a multiple of 3.

Note that Km(
√

∆(E)) is either Km, Km(
√
−1) or

Km(
√
±ε). Thus we compute the ray class number of

Km(
√

∆(E)) modulo
∏

p|2 p. The following computations
are carried out by using Pari/GP [17] (Same type results
were obtained in [9] by using KASH [11]). The bold-faced
numbers in this table are the ones divisible by 3.

m Km Km(
√
−1) Km(

√
ε) Km(

√
−ε)

43 1 3 10 1
46 1 4 1 3
59 1 9 6 1

Table 1. Ray class number of Km(
√

∆(E))
(m = 43, 46, 59) modulo

∏
p|2 p

As a result, if m = 46 the discriminant ∆(E) is −ε6n+3

and if m = 59 the discriminant is −ε6n or ε6n+3. We
can conclude that it is enough to determine E+

3 (OK46),
E+

0 (OK59) and E−
3 (OK59) to prove Theorem 1.2 for m = 46

and 59.
However, the case m = 43 remains because some of the

conditions in Lemma 2.2 do not hold. In this case, it
is known that the discriminant is −ε2n (cf. [9] and Lem.
2.3) so we need to compute the three sets, E+

0 (OK43),
E+

2 (OK43) and E+
4 (OK43).

3. Results of the computation

3.1. Computing Mordell-Weil groups and inte-
gral points

To compute E±
n (OKm), we first compute the Mordell-

Weil group E±
n (Km). It is decomposed into a direct-sum

of E±
n (Km)tors (torsion part) and E±

n (Km)free (free part,
which is not canonical). The torsion part can be de-
termined by observing reduction at good primes and de-
composition of division polynomials. On the other hand,
the free part can be computed by applying two-descent
and infinite descent (the process of decompression from
E±

n (Km)/2E±
n (Km) to E±

n (Km)).

Proposition 3.1. A basis of E±
n (Km) is as follows:

1. (Case m = 43)
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(a) E+
0 (K43) ≃ Z ⊕ Z/2Z and a basis is {T43, P43A}

where T43 = (−12, 0) is 2-torsion and

P43A =
(
−104

9
,−56

27

√
43

)
is a generator of the free-part.

(b) E+
2 (K43) ≃ Z and a basis is {P43B} where

P43B =
(
3200 − 488

√
43, 294088 − 44848

√
43

)
.

(c) E+
4 (K43) ≃ Z and a basis is {P43C} where

P43C = (x, y) with

x = −727456 + 110936
√

43

y = 496115392 − 75656888
√

43

2. (Case m = 46) E+
3 (K46) is isomorphic to Z ⊕ Z/2Z

with a basis {T46, P46} where T46 = (−12ε, 0) (ε =
24335 + 3588

√
46) is 2-torsion and P46 = (x, y) with

x =
1044823225

6084
+

987505
39

√
46

y =
116177050458217

474552
+

73202442649
2028

√
46

is a generator of the free-part.

3. (Case m = 59)

(a) E+
0 (K59) ≃ Z⊕Z/2Z and a basis is {T59A, P59A}

where T59A = (−12, 0) is 2-torsion and

P59A =
(
−133

16
,
283
64

√
59

)
is a generator of the free-part.

(b) E−
3 (K59) ≃ Z⊕2 ⊕ Z/2Z and a basis is

{T59B , P59B , P59C} where T59B = (12ε, 0) (ε =
−530 + 69

√
59) is 2-torsion and P59B = (x, y)

with

x = 9275 − 2415
2

√
59

y = −5810733
4

+
756493

4

√
59

and P59C = (z, w) with

z =
50000200

59
− 6509460

59

√
59

w =
65094772968

59
− 500002437752

3481

√
59

are generators of the free-part.

Here we used Denis Simon’s two-descent program (cf.
[22]) on Pari-GP [17]. To compute some related data effi-
ciently, we executed the Pari-GP program on Sage [19] as
a built-in software.

Warning: Simon’s two-descent program is also available
as a Sage’s built-in function that does not require the Pari-
GP platform. However, this function has fatal bugs (er-
rors) that come from the same bugs in the previous edition
of Simon’s original (Pari-GP) program. For the Pari-GP
platform, this problem has already been fixed by himself
completely, but it is not yet for the Sage platform.

To compute the subset E±
n (OKm) of integral points in

E±
n (Km), we use the method of elliptic logarithm to com-

pute the linear form:

P =
r∑

i=1

miPi + nT ∈ E±
n (OKm) (m1, ..., mr, n ∈ Z)

where Pi’s and T are generators of the free part and the
torsion part. Moreover, the maximum of the absolute val-
ues of the coefficients of the linear form

M := max {|m1|, ..., |mr|, |n|}

can be bounded using the LLL-algorithm (by Lenstra-
Lenstra-Lovász, cf. [23]).

Proposition 3.2. The set of integral points E±
n (OKm) is

as follows:

1. (Case m = 43)

(a) E+
0 (OK43) = {O, T43, T43 ± P43A},

(b) E+
2 (OK43) = {O,±P43B ,±2P43B},

(c) E+
4 (OK43) = {O,±P43C ,±2P43C}.

2. (Case m = 46) E+
3 (OK46) = {O, T46}.

3. (Case m = 59)

(a) E+
0 (OK59) = {O, T59A},

(b) E−
3 (OK59) = {O, T59B}.

Finally, we compute that the elliptic curve (1) has triv-
ial conductor. As a result, there are no pairs (c4, c6) ∈
E±

n (OKm) for which (1) has trivial conductor. Therefore,
the non-existence of the curves follows.

In the same way, we can prove Theorem 1.3. For
m = 62, 67 and 71, by the assumption of cubic discrimi-
nants, it is enough to determine E±

3n(OKm) (n ∈ Z). To
apply Lemma 2.4, we compute the ray class number of
Km(

√
∆(E)) modulo

∏
p|2 p.

m Km Km(
√
−1) Km(

√
ε) Km(

√
−ε)

62 1 8 3 1
67 1 3 14 1
71 1 7 3 4

Table 2. Ray class number of Km(
√

∆(E))
(m = 62, 67, 71) modulo

∏
p|2 p

Finally it is enough to determine E−
3 (OK62), E+

0 (OK67) and
E−

3 (OK71). Here is the result of computing Mordell-Weil
groups and sets of integral points.
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Proposition 3.3. A basis of E±
n (Km) and the set of inte-

gral points E±
n (OKm) are as follows:

1. (Case m = 62) E−
3 (K62) is isomorphic to Z ⊕ Z/2Z

with a basis {T62, P62} where T62 = (12ε, 0) (ε = −63+
8
√

62) is 2-torsion and

P62 =
(

30492
25

− 3872
25

√
62,−8377936

125
+ 8512

√
62

)
is a generator of the free-part. The set of integral
points is

E−
3 (OK62) = {O, T62} .

2. (Case m = 67) E+
0 (K67) is isomorphic to Z ⊕ Z/2Z

with a basis {T67, P67} where T67 = (−12, 0) is 2-
torsion and

P67 =
(
−584

49
,
248
343

√
67

)
is a generator of the free-part. The set of integral
points is

E+
0 (OK67) = {O, T67, T67 ± P67} .

3. (Case m = 71) E−
3 (K71) is isomorphic to Z⊕2 ⊕Z/2Z

with a basis {T71, P71A, P71B} where T71 = (12ε, 0)
(ε = 3480 + 413

√
71) is 2-torsion and P71A = (x, y)

with

x = 165300 +
39235

2

√
71

y =
377098253

4
+

44753329
4

√
71

and P71B = (z, w) with

z =
1560462848

3025
+

185192868
3025

√
71

w = −87152513410872
166375

− 10343100438152
166375

√
71

are generators of the free-part. The set of integral
points is

E−
3 (OK71) =

{O, T71,±P71A ∓ P71B , T71 ± P71A ∓ P71B}.
(double sign in the same order)

Moreover, there are no pairs (c4, c6) ∈ E±
n (OKm) for which

the elliptic curve (1) has trivial conductor.

3.2. Trial of computation

In this subsection, we show examples of computation
times of running Simon’s two-descent program to compute
Mordell-Weil groups. Simon’s two-descent is mainly con-
trolled by four parameters:

• lim1: limit on trivial points on binary quartic forms
(“quartics” for short),

• lim3: limit on points on ELS (everywhere locally solv-
able) quartics,

• limtriv: limit on trivial points on elliptic curve,

• limbigprime: distinguish between small and large
prime numbers to use probabilistic tests for large
primes,

and there are some supplemental parameters (maxprob,
bigint, nbideaux, etc.).

Now we fix the set of main parameters
(lim1, lim3, limtriv, limbigprime) = (40, 60, 40, 30)
that were chosen to compute the case m = 43. The total
running times of these computations are as follows:

m E±
n desired actual CPU time (sec.) S/F

43
E+

0 1 1 570.168 success
E+

2 1 1 120.916 success
E+

4 1 1 112.554 success
46 E+

3 1 1 670.117 success

59 E+
0 1 1 195.500 success

E−
3 2 1 300.582 failure

62 E−
3 1 1 317.216 success

67 E+
0 1 0 976.785 failure

71 E−
3 2 2 279.413 success

Table 3. Rank of E±
n (Km) with computation time

(Intel CoreTM i5 processor (3.30GHz, dual core) and
4.0GB memory)

As above, our trials failed for two cases due to the
difficulty in searching for points on these curves E±

n .
Thus we need to change these parameters to get our re-
sults. As a result, we succeed in computing the case
E−

3 (OK59) and E+
0 (OK67) with the set of parameters

(lim1, lim3, limtriv, limbigprime) = (70, 80, 150, 80) but
we need a lot of time for the computation.

m E±
n desired actual CPU time (sec.) S/F

59 E−
3 2 2 2192.911 success

67 E+
0 1 1 6186.093 success

Table 4. Rank of E±
n (Km) with computation time

for the case E−
3 (OK59) and E+

0 (OK67)
(Intel CoreTM i5 processor (3.30GHz, dual core) and

4.0GB memory)
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