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MATHEMATICAL MODELLING OF FLOW OVER PERIODIC
STRUCTURES

PETR BAUER1

Abstract. We examine the influence of roofs’ shapes on the boundary layer of a simplified
urban canopy by computing non-stationary Navier-Stokes flow over a periodic pattern. The solution
is obtained by means of finite element method (FEM). We use non-conforming Crouzeix-Raviart
elements for velocity and piecewise constant elements for pressure. The resulting linear system is
solved by the multigrid method. We present computational studies of the problem.
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1. Introduction. This paper deals with the flow over periodic patterns. Our
primary motivation is modelling of the urban canopy, though other applications exist,
including the modelling of rough surfaces in biology, or in the construction of pipelines.

Let Ω ⊂ R2 be a polygonal domain derived from a rectangle by substitution of
the bottom edge by a piecewise linear line representing the terrain. The boundary of
Ω splits into four clearly defined parts, three of them being plain line segments. We
will denote them by Γ1 to Γ4 in a counterclockwise fashion, or simply refer to them
as the “terrain”, “outlet”, “upper”, and “inlet” parts; see Fig. 1.1.

Γ4

(inlet)

Γ3(upper)

Γ2

(outlet)

Γ1(terrain)

Fig. 1.1. Computational domain

We consider a periodic pattern of buildings with the basic parameters given by
Fig. 1.2, and we examine the properties of the boundary layer depending on the roofs’
shape.
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Fig. 1.2. Topology of a street canyon

On [0, T ]×Ω, we solve the incompressible Navier-Stokes equations for velocity �u
and pressure p, with the kinematic viscosity ν = 1.5 · 10−5

∂�u(t, �x)

∂t
+ �u(t, �x) · ∇�u(t, �x)− ν��u(t, �x) +∇p(t, �x) = 0, (1.1a)

∇·�u(t, �x) = 0. (1.1b)

The boundary conditions are of the Dirichlet and do-nothing type

ux = uz = 0 �x ∈ Γ1, (1.2a)

−p�n+ ν(∇�u) · �n = 0 �x ∈ Γ2, (1.2b)

−p+ ν
∂ux
∂z

= 0, uz = 0 �x ∈ Γ3, (1.2c)

�u = �uin = (uα, 0) �x ∈ Γ4. (1.2d)

The inlet profile uα is given by the power law

uα(z) = ūref

( z

zref

)α
, (1.3)

where ūref is the average wind speed at some reference height zref , and α is the
profile exponent.

As the initial condition �u(0, �x), we take the solution of the stationary Stokes
problem, obtained by omitting the first two terms in (1.1a) and setting ν = 1.0.

2. Weak formulation of Navier-Stokes equations. Let X = (H1(Ω))2,
V (�uin) = {�u ∈ X, satisfying (1.2)}, and Q = L2(Ω). We set the following forms

a(�u,�v) = ν

∫
Ω

2∑
i,j=1

( ∂ui
∂xj

∂vi
∂xj

)
dx dz, b(�u,�v, �w) =

∫
Ω

2∑
i,j=1

(
uj
∂vi
∂xj

wi

)
dx dz.

For time discretization, we use the semi-implicit Oseen scheme [2]. The time
derivative is approximated by the backward Euler difference

∂�u(tn, x)

∂t
≈ �un − �un−1

τ
, (2.1)

where tn = nτ . The convective term is discretized by �un−1 · ∇�un, and the remaining
terms are taken implicitly.

For each timestep tn, we seek �un ∈ V (�uin) and p
n ∈ Q, such that ∀�v ∈ V (�0) and

∀q ∈ Q

(�un, �v) + τb(�un−1, �un, �v) + τa(�un, �v)− τ(pn,∇·�v) = (�un−1, �v), (2.2)

(∇·�un, q) = 0. (2.3)
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To deal with the nonlinear convective term, we employ the upwinding technique
proposed by [3], and denote the respective approximation by b̄(�un−1

h , �unh, �v). The main
idea of the method is to split the domain into lumped regions Rl around each midpoint
Ql of the original triangulation; see Fig. 2.1.

Ql

Rl

Fig. 2.1. Upwind - lumped region Rl (grey) around the midpoint Ql

2.1. Discrete formulation. Let index h denote the respective finite-dimensional
set V h(�uin), space Q

h, and the corresponding discrete functions �unh, p
n
h. We intro-

duce �wh ∈ V h(�uin) to represent the inhomogeneous Dirichlet data, and we denote
�vh = �uh − �wh ∈ V h(�0). The discrete problem for each timestep tn reads:
Find �vnh ∈ V h(�0) and pnh ∈ Qh, such that ∀�v ∈ V h(�0) and ∀q ∈ Qh

(�vnh , �v) + τ b̄(�un−1
h , �vnh , �v) + τa(�vnh , �v)− τ(pnh,∇·�v) =

= (�un−1
h − �wn

h , �v)− τ b̄(�un−1
h , �wn

h , �v)− τa(�wn
h , �v),

(∇·�vnh , q) + (∇· �wn
h , q) = 0.

(2.4)

2.2. Galerkin approximation. Let us denote the basis of V h(�0) by (�φhj )j∈Jh

and the basis of Qh by (ψh
k )k∈Kh . The functions �vh and ph can then be expressed as

�vnh =
∑
j∈Jh

vnh,j
�φhj , pnh =

∑
k∈Kh

pnh,kψ
h
k . (2.5)

We introduce the matrices

M = (Mij)
Jh

i,j=1 Mij = (�φi, �φj), (2.6)

A = (Aij)
Jh

i,j=1 Aij = a(�φi, �φj), (2.7)

B = (Bij)
Jh,Kh

i,j=1,1 Bij = (∇·�φi, ψj), (2.8)

N(�un−1
h ) = (Nij)

Jh

i,j=1 Nij = b̄(�un−1
h , �φi, �φj), (2.9)

and the coefficient vectors

vn
h = (vnh,j)

Jh

i=1, pn
h = (pnh,k)

Kh

k=1. (2.10)

Taking �v = �φi for i = 1, . . . , Jh and q = ψk for k = 1, . . . ,Kh, the discrete
formulation (2.4) leads to a system of linear equations for each timestep tn

Mvn
h + τN(�un−1

h )vn
h + τAvn

h + τBTpn
h = f̃ , (2.11a)

Bvn
h = g̃, (2.11b)
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where

f̃i = (�un−1
h , �φi)− (�wn

h ,
�φi)− τ b̄(�un−1

h , �wn
h ,
�φi)− τa(�wn

h ,
�φi), (2.11c)

g̃k = −(∇· �wn
h , ψk). (2.11d)

The matrices M and A are called the mass matrix and the stiffness matrix of
the problem (2.11).

3. Numerical solution using FEM. We choose non-conforming Crouzeix-
Raviart elements [4] to approximate the components of velocity, Fig. 3.1, and piecewise
constant elements for pressure.

Fig. 3.1. Crouzeix-Raviart element - scalar test function

We use a hierarchy of uniformly refined structured meshes, Fig. 3.2, and employ
a multigrid solver based on Vanka-type smoother [5] to solve the linear system (2.11).
An extension for higher order elements can be found in [6].

Fig. 3.2. Coarsest mesh

4. Experimental order of convergence. To verify the numerical scheme, we
compute the experimental orders of convergence (EOCs) using an artificial problem
with prescribed velocity field

�u∗ = cos(2πt)

(−x+ 4y
−3x2 + y

)
. (4.1)

The problem is defined on a unit square with both the initial condition and the
non-stationary Dirichlet boundary conditions given by (4.1). We evaluate the left-
hand side of (1.1a) for �u∗ and put it as an additional forcing term in the right-hand
side of the system.
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Solving the problem on two different grids M1 and M2 with space steps h1 and
h2 respectively, we define the EOC for each time level as

EOC(t,M1,M2) = log
(‖�uh1

(t)− �u∗(t)‖L2(Ω)

‖�uh2(t)− �u∗(t)‖L2(Ω)

)
/ log
(h1
h2

)
. (4.2)

In our case, the coarsest mesh M0 consists of four triangles obtained by cutting
the square alongside both its diagonals. Through uniform refinement, we get M1,
consisting of 16 triangles, and so on. The actual computations were done for four
consecutive gridsM5 toM8, yielding three series of EOCs, which are shown in Fig. 4.1
for t ∈ [0, 0.1].

Fig. 4.1. EOC series for t ∈ [0, 0.1]

The EOCs of approximately one are mostly attributed to the inaccurate repre-
sentation of the boundary condition. Currently, the function wh is constructed as a
combination of CR-type boundary elements.

5. Numerical results. We take a pattern consisting of eight buildings with
square canyons between them and consider five different arrangements of roofs. The
first one is a simple pattern with flat roofs. The next two configurations contain
pitched roofs, one in the upwind direction and the other one in the downwind direc-
tion. The height of the pitched part is 0.5. We also examine an alternating pattern
where the pairs of one higher building (H = 1.5) and one lower building (H = 1.0)
periodically repeat. The Reynolds number is 105 in these four cases.

In the last simulation, we use symmetric saddle roofs with a relative height of
0.2. The Reynolds number is 5× 104 in this case, and also the numerical parameters
slightly differ. The complete set of parameters for all five cases is given in tables
below.

PARAMETERS cases (1), 2 . . . , 4
domain size 24× (8), 10.5
Reynolds number 105

profile exponent α = 0.28
initial flow Stokes
time interval T = 60

DOFs case 1 cases 2, . . . , 4
velocity 5109056 7000896
pressure 1703936 2334720

τ 1/256
accuracy 1.0e-08
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Fig. 5.1. |�u(t)| at t = 40 for saddle roofs

PARAMETERS case 5
domain size 24× 8
Reynolds number 5× 104

profile exponent α = 0.28
initial flow Stokes
time interval T = 40

DOFs case 5
velocity 4625920
pressure 1540096

τ 0.004
accuracy 1.0e-08

The results are shown in Fig. 5.2 and Fig. 5.1. We can observe a clear difference
depending on the type of the roofs, which is in agreement with what we would expect.
The aerodynamical shape of the second arrangement creates a very thin boundary
layer, while the third and fourth arrangement create a strongly turbulent layer. The
saddle roofs produce pairs of vortices on top of each other.

6. Conclusion. We obtained some qualitative results of flow in a simplified
urban canopy for different shapes of roofs. Our next goal is using a non-stationary
inlet condition by [7] to catch the turbulent properties of the atmospheric boundary
layer.
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Fig. 5.2. |�u(t)| at t = 55 for cases 1, . . . , 4
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