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Abstract. In the catalytic oxidation of carbon monoxide molecules (CO) on platinum surface
(Pt), various pattern formations of densities of CO molecules have attracted many chemists and
mathematicians since the great contributions by Ertl (e.g., [15]). Hildebrand [2] has proposed a
reaction-diffusion-advection system to give mathematical understand for such pattern formations
from macroscopic point of view. In a previous paper [6], we obtain sufficient conditions of the
existence (or nonexistence) of stationary patterns of the system. However, the L∞-boundedness
for all stationary patterns have not yet been obtained. In this paper, we show that all stationary
patterns of the system possess a universal L∞ bound. This result yields a validity of the system
from the modelling point of view.
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1. Introduction

In the field of surface chemistry, chemical mechanism in
a catalytic oxidation of carbon monoxide molecules (CO)
on platinum surface (Pt) have been studied. Among other
things, owing to great contributions by Ertl (e.g., [15]), sev-
eral pattern formations of densities of molecules on the Pt
surface can be observed by special electron microscopes.
In order to reveal the mechanism of such pattern forma-
tions from the mathematical view-point, several models of
partial differential equations have been studied (e.g., [1]-[7],
[9]-[14]). In this paper, we are concerned with the following
reaction-diffusion-advection model proposed in [2];

(P)



ut = d∆u + u(1 − u)(u + v − 1) in Ω × (0,∞),
vt = D∆v + Dα∇·{v(1 − v)∇χ(u)} + g(u, v)

in Ω × (0,∞),
∂u

∂ν
=

∂v

∂ν
= 0 on ∂Ω × (0,∞),

u( · , 0) = u0 ≥ 0, v( · , 0) = v0 ≥ 0 in Ω,

where Ω ⊂ R2 is a bounded domain with smooth bound-
ary ∂Ω and ν is the outward unit normal vector on ∂Ω.
The domain Ω corresonds to the Pt surface. The unknown
functions u = u(x, t) and v = v(x, t) denote a chemical
structural state of Pt surface and the adsorbate cover-
age rate against Pt surface by CO molecules at position
x ∈ Ω and time t ∈ [0, ∞), respectively. In the first
equation, positive coefficient d represents the diffusion of u
and the reaction term u(1− u)(u + v − 1) is bistable which
means that the structural state possesses two stable con-
stant equilibria u = 0 and u = 1. In the advection term
α∇·{v(1 − v)∇χ(u)}, α is a positive constant and χ(u)

yields a surface potential given by

χ(u) = u2(2u − 3), (1)

which is monotone decreasing for u ∈ (0, 1). From a chem-
ical view-point, ∆v denotes the diffusion of CO molecules
by Fick’s law and α∇·{v(1 − v)∇χ(u)} represents viscous
flow of CO molecules induced by the gradient of the surface
potential χ(u). Here, v(1 − v) means that CO molecules
can pass preferentially through vacant adsorbate sites on
the surface. Therefore, it can be said that positive coeffi-
cient D represents mobility of CO molecules. The reaction
term in the second equation is given by

g(u, v) = c(1 − v) − aeαχ(u)v − bv, (2)

where a, b and c are positive constants. Here c(1−v) repre-
sents adsorption of CO molecules against Pt surface. Both
−aeαχ(u) and −bv denote desorption of CO molecules from
the surface into the gas phase. The former is a thermo-
dynamical desorption depending on the surface potential
χ(u) and the latter is a chemical desorption driven by the
oxidation.

From the modelling aspect, we are interested in spatio-
temporal behaviours of solutions (u, v) which fulfill

0 < u < 1 and 0 < v < 1. (3)

Indeed, Tsujikawa and Yagi [14] have proved that, in a
suitable functional space, for each initial value (u0, v0) sat-
isfying (3) in Ω, (P) has a unique solution (u, v) and it also
satisfies (3) for (x, t) ∈ Ω × (0,∞).

Concerning stationary patterns of (P), we obtain suffi-
cient conditions on the existence (or nonexistence) of non-

69



70 Journal of Math-for-Industry, Vol. 3 (2011C-9)

constant solutions of the associate stationary problem ([6]);

(SP)


d∆u + u(1 − u)(u + v − 1) = 0 in Ω,

D∆v + Dα∇·{v(1 − v)∇χ(u)} + g(u, v) = 0 in Ω,
∂u

∂ν
=

∂v

∂ν
= 0 on ∂Ω,

u ≥ 0, v ≥ 0 in Ω.

According to our results in [6, Theorems 1.1 and 1.2], there
exist small ranges of d such that (SP) has at least one
nonconstant solutions:
Theorem 1. For any fixed (D, α, a, b, c), there exists a pos-
itive sequence {dj}∞j=0 with

d0 > d1 ≥ d2 ≥ · · · ≥ dj ≥ · · · → 0 (j → ∞)

such that

(i) if d ≥ d0, then (SP) has no nonconstant solution with
property (3),

(ii) if d ∈ (dj+1, dj) and dj+1 ̸= dj and j is odd, then
(SP) has at least one nonconstant solution (u, v) with
property (3).

In view of Theorem 1, it remains an unsettled question
whether all nonconstant solutions of (SP) satisfy (3). Since
our paper [6] has found nonconstant solutions in the set of
(u, v) satisfying (3), the above question still remains open.
In the present paper, we shall prove that all nonconstant
solutions of (SP) satisfy (3). This result implies a validity
from the modelling point of view.

2. Universal bound for stationary
patterns

In this section, we show that any nonconstant solution
(u, v) of (SP) satisfies (3) in Ω. Before stating our results,
we collect all constant solutions of (SP). It is easily verified
that (SP) possesses three constant solutions

(u, v) =
(

0,
c

a + b + c

)
, (u, v) =

(
1,

c

ae−α + b + c

)
(4)

and (u∗, v∗) with u∗ + v∗ − 1 = 0 and g(u∗, v∗) = 0. It is
easily verified from (2) that (u∗, v∗) satisfies

ae−α + b

ae−α + b + c
< u∗ <

a + b

a + b + c

and
c

a + b + c
< v∗ <

c

ae−α + b + c
.

The following theorem is a main result of this paper.
Theorem 2. Let (u, v) be any solution of (SP) except two
constant solutions in (4). Then (u, v) satisfies the following
estimates;

(i) 0 < u(x) < 1 for x ∈ Ω,

(ii)
c

a + b + c
<

1
|Ω|

∫
Ω

v dx <
c

ae−α + b + c
,

(iii) 0 < v(x) < 1 for x ∈ Ω.

For the proofs of (i) and (ii), we refer to our previous
paper [6, Lemma 2.2]. The L∞-estimate (iii) for v is a new
result and its proof is our main task of this paper. To do
so, we prepare the L2-estimate of ∇u.
Lemma 1. Let (u, v) be any positive solution of (SP).
Then u satisfies

d

|Ω|

∫
Ω

|∇u|2 dx ≤ 4c

27(ae−α + b + c)
.

Proof. We multiply the first equation by u and integrate
the resulting expression to get

d

∫
Ω

|∇u|2 dx =
∫

Ω

u2(1 − u)(u + v − 1) dx

≤
∫

Ω

u2(1 − u)v dx.

(5)

Since u2(1 − u) ≤ 4/27 for 0 < u < 1, then (5) and (ii) of
Theorem 2 yield the desired estimate.

Proof of Theorem 2. Let (u, v) be any solution of (SP) ex-
cept two constant solutions in (4). We first prove v ≤ 1 in
Ω along a contradiction argument. Suppose that

K = {x ∈ Ω : v(x) > 1}

possesses a positive measure. In a case when ∂K is smooth,
we can use the divergence theorem in the second equation
of (SP) to obtain∫

K
{ c − (aeαχ(u) + b + c)v }dx

= −D
∫
K
∇·{∇v + αv(1 − v)∇χ(u) }dx

= −D
∫

∂K
∇v ·ν︸ ︷︷ ︸
≤ 0

dσ

−Dα

∫
∂K

v (1 − v)︸ ︷︷ ︸
= 0 on ∂K∩Ω

χu(u) ∇u·ν︸ ︷︷ ︸
= 0 on ∂K∩∂Ω

dσ,

(6)

where ν = ν(x) denotes the outer unit normal vector at
x ∈ ∂K. By the definition of K and the Neumann boundary
condition on ∂Ω, we observe that

∇v ·ν

{
≤ 0 on ∂K ∩ Ω,

= 0 on ∂K ∩ ∂Ω
(7)

and

1 − v

{
= 0 on ∂K ∩ Ω,

≤ 0 on ∂K ∩ ∂Ω.
(8)

Since χu(u) ≤ 0 by (1) and (i) of Theorem 2, then (6)-(8)
imply ∫

K
{ c − (aeαχ(u) + b + c)v }dx ≥ 0.

Hence it follows that

1
|K|

∫
K

v dx ≤ c

ae−α + b + c
< 1,



Kousuke Kuto and Tohru Tsujikawa 71

which yields a contradiction to the definition of K. Then
we deduce v ≤ 1 in Ω. Since a similar argument leads to
v ≥ 0 in Ω, we know 0 ≤ v ≤ 1 in Ω provided that ∂K is
smooth.

However if ∂K possesses singularity, the divergence the-
orem in (6) is not applicable. Note that any singular point
x∗ ∈ ∂K satisfies v(x∗) = 1 and ∇v(x∗) = 0. Indeed, if
v(x∗) > 1, then x∗ ∈ ∂Ω ∩ ∂K and there exists a neigh-
bourhood N of x∗ such that v > 1 on N ∩ ∂K by the con-
tinuity of v. This fact means (N ∩ ∂K) ⊂ ∂Ω, namely, ∂K
is smooth near x∗ because of the smoothness of ∂Ω. This
yields a contradiction. On the other hand, if v(x∗) = 1
and ∇v(x∗) ̸= 0, then the implicit function theorem en-
sures the level set {v = 1} is smooth near x∗, which is also
a contradiction.

Then, we discuss the case when there exists x∗ ∈ ∂K
such that

v(x∗) = 1 and ∇v(x∗) = 0. (9)

In such a singular case, we recall the Sard theorem which
implies that the set of critical values of v has Lebesgue
measure zero. Since 1 is a critical value of v by (9), the
Sard theorem ensures a sequence {εn} with lim

n→∞
εn = 0

such that 1 + εn are regular values of v for all n ∈ N.
Hence this fact implies

Kn := {x ∈ Ω : v(x) > 1 + εn}

possess smooth boundaries ∂Kn. Then we can use the di-
vergence theorem over Kn to see∫

Kn

{ c − (aeαχ(u) + b + c)v }dx

= −D
∫
Kn

∇·{∇v + αv(1 − v)∇χ(u) }dx

= −D
∫

∂Kn

∇v ·ν dσ −Dα

∫
∂Kn

v(1 − v)∇χ(u)·ν dσ.

(10)
The definition of Kn and the boundary conditions on v
imply ∇v · ν ≤ 0 on ∂Kn and v = 1 + εn on ∂Kn ∩Ω. Fur-
thermore, since ∇χ(u)·ν = 0 on ∂Kn∩∂Ω by the boundary
condition on u and (1), then we use the divergence theorem
again in (10) to see∫

Kn

{ c − (aeαχ(u) + b + c)v }dx

≥Dα(1 + εn)εn

∫
∂Kn

∇χ(u)·ν dσ

=Dα(1 + εn)εn

∫
Kn

∆χ(u) dx.

(11)

It follows from (1) and (i) of Theorem 2 that∣∣∣∣∫
Kn

∆χ(u) dx

∣∣∣∣ =
∣∣∣∣∫

Kn

(
χuu(u)|∇u|2 + χu(u)∆u

)
dx

∣∣∣∣
≤ C

(∫
Kn

|∇u|2 dx +
∫
Kn

|∆u|dx

)

for some positive constant C independent of n. We recall
Lemma 1 to know that ∥∇u∥L2(Kn) is uniformly bounded
with respect to n. Furthermore it follows from (i) and (ii)
of Theorem 2 that∫

Kn

|∆u|dx =
1
d

∫
Kn

|u(1 − u)(u + v − 1)|dx

is also uniformly bounded with respect to n. Then letting
n → ∞ in (11) leads us to

1
|K|

∫
K
(aeαχ(u) + b + c)v dx ≤ c.

Therefore it follows that

1
|K|

∫
K

v dx ≤ c

ae−α + b + c
< 1,

which gives a contradiction to the definition of K. Obvi-
ously, a similar procedure leads to v ≥ 0 in Ω. Then we
can deduce 0 ≤ v ≤ 1 in Ω.

Finally we prove the strict inequalities in (iii) of Theorem
2. Suppose for contradiction that v(x0) = minΩ v = 0
for some x0 ∈ Ω. The second equation of (SP) can be
expressed by

∆v + α(1 − 2v)χu(u)∇u·∇v

+αv(1 − v)
{
χuu(u)|∇u|2 + χu(u)∆u

}
+

g(u, v)
D

= 0.

By using the maximum principle (see e.g., Lou-Ni [8,
Lemma 2.1]), we see

g(u(x0), v(x0))
D

=
c

D
≤ 0.

Hence this is a contradiction. Similarly we can show v < 1
in Ω. Therefore we complete the proof of Theorem 2.

Once we obtain Theorem 2, the elliptic regularity theory
and the Sobolev embedding theorem lead us to a priori
estimates for ∥u∥W 2,p and ∥v∥W 2,p uniformly with respect
to D.
Theorem 3. Let p > 1. There exists a positive constant
M independent of D such that any solution (u, v) of (SP)
satisfies

∥u∥W 2,p(Ω) ≤ M, ∥v∥W 2,p(Ω) ≤ M.

Proof. The proof is essentially same as that of [6, Theorem
2.4].

Thanks to Theorem 3, we can derive a shadow system of
(SP) as D → ∞:
Theorem 4. For any positive sequence {Dn} with
limn→∞ Dn = ∞, let (un, vn) be any sequence of solutions
of (SP) with D = Dn. Then there exists a positive solution
(u∞, v∞) of

d∆u + u(1 − u)(u + v − 1) = 0 in Ω,

∆v + α∇·{v(1 − v)∇χ(u)} = 0 in Ω,
∂u

∂ν
=

∂v

∂ν
= 0 on ∂Ω

(12)
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with 0 < u, v < 1 in Ω and∫
Ω

g(u, v) dx = 0 (13)

such that

lim
n→∞

(un, vn) = (u∞, v∞) in C(Ω) × C(Ω),

passing to a subsequence.
The proof of Theorem 4 can be carried out by a com-

pactness argument based on the combination of the elliptic
regularity, the Sobolev embedding and Theorem 3 (see [7]
for detail).

To study the shadow system (12)-(13) is important in the
sense that solutions of (12)-(13) can approximate original
solutions of (SP) when the movements D of CO molecules is
large. In [7], we also obtain the global bifurcation structure
of solutions of (12)-(13) in a simplified one-dimensional
case.
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