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Abstract. Nonlinear diffusion equations exhibit a wide variety of phenomena in the several fields
of fluid dynamics, plasma physics and population dynamics. Among these the interaction between
diffusion and absorption suggests a remarkable property in the behavior of the support of solution;
that is, after support splitting phenomena appear, the support merges, and thereafter the support
splits again. Moreover, numerically repeated support splitting and merging phenomena are observed.
In this paper, making use of the properties of the particular solutions, we construct an initial function
for which such phenomena appear.
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1. Introduction

The interaction between diffusion and absorption appears
in the flow through an absorbing medium occupying all of
R1, and is described in the form of the following initial
value problem for the degenerate parabolic equation with
an additional lower order term:

vt = (vm)xx − cvp, x ∈ R1, t > 0, (1)
v(0, x) = v0(x), x ∈ R1, (2)

where m > 1, 0 < p < 1, c is a positive constant, v de-
notes the density of the fluid, −cvp describes volumetric
absorption, and v0(x) ∈ C0(R1) is nonnegative and has
compact support. This equation (1) is called the porous
media equation with absorption.

In the behavior of solutions of (1)-(2) there appear total
extinction in finite time and finite propagation of the sup-
port, which are caused by the interaction between diffusion
and absorption. Moreover, numerical support splitting and
merging phenomena are observed (see Fig.1).

From analytical points of view, the existence and unique-
ness of a weak solution, the total extinction in finite time
and the finite propagation of the support are proved by
Oleinik, Kalashnikov and Chzou[11], Kalashnikov[5, 6] and
Knerr[9].

Rosenau and Kamin[12] tried the numerical computation
to (1)-(2) and suggested the possibility of the support to
split. Chen, Matano and Mimura[2] constructed the ini-
tial function for which the support of the solution splits
into multiple connected components in a finite time. From
a numerical point of view, Nakaki and Tomoeda[10] con-
structed the finite difference scheme which realizes such a
phenomenon, and obtained the sufficient condition imposed

on v0(x) for which the support splits. Kersner[8] proved
the support splitting property in the initial-boundary value
problem to (1) by constructing supersolutions.

For support splitting and merging phenomena, to the best
of our knowledge, we have not been able to find any results.
This motivates us to investigate such phenomena. The dif-
ficulty is to determine whether or not the support splitting
and merging phenomena occur, because the convergence of
numerical solutions does not always imply that the exact
solution also keeps the same phenomena. In this paper,
our approach is based on the properties of the particular
solutions of (1) under the following
Assumption A. m + p = 2 (m > 1, 0 < p < 1).
Unfortunately, in the case where m + p ̸= 2 (m > 1, 0 <
p < 1), we are unable to construct the explicit solution
of (1). This is the reason why we are concerned with the
specific case stated in Assumption A.

Figure 1: An illustration of support splitting and merging
phenomena.
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2. Behavior of numerical support

Setting u = vm−1, we rewrite (1)–(2) as follows:

ut = muuxx +
m

m − 1
(ux)2 − (m − 1)cχ{u>0}, (3)

u(0, x) = u0(x) ≡ (v0(x))m−1. (4)

We note that the effect of absorption is expressed as the
constant −(m − 1)c under Assumption A. Our difference
scheme approximates the problem (3)–(4) instead of (1)–
(2)(see [10]).

Now we show some numerical solutions of un
h to (3)-(4)

with m = 1.0625 and c = 36 in the following figures. The
convergence of the numerical solutions to the exact one of
(1)-(2) is established (see Theorem 3.1 in [10]). Numeri-
cally repeated support splitting and merging phenomena are
observed in the neighbourhood of x = 0. This initial func-
tion is constructed so that the assumption in Theorem 4
is satisfied, which implies that the occurrence of such phe-
nomena is justified from analytical points of view. In the
following we show the construction of it.

 0

 2

 4

 6

 8

 10

 12

-30 -20 -10  0  10  20  30

Initial function.

t = 0.0

Connected

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

-1.5 -1 -0.5  0  0.5  1  1.5

A close up of the previous figure

 0

 2

 4

 6

 8

 10

 12

-30 -20 -10  0  10  20  30

t = 0.2757D − 01

Split

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

-1.5 -1 -0.5  0  0.5  1  1.5

A close up of the previous figure

 0

 2

 4

 6

 8

 10

 12

-30 -20 -10  0  10  20  30

t = 0.5178D − 01

Merged

 0

 2

 4

 6

 8

 10

 12

-30 -20 -10  0  10  20  30

t = 0.1763D + 00

Split

 0

 2

 4

 6

 8

 10

 12

-30 -20 -10  0  10  20  30

t = 0.2752D + 00

Merged

 0

 2

 4

 6

 8

 10

 12

-30 -20 -10  0  10  20  30

t = 0.1001D + 01

Split

 0

 2

 4

 6

 8

 10

 12

-30 -20 -10  0  10  20  30

t = 0.1200D + 01

Merged

 0

 2

 4

 6

 8

 10

 12

-30 -20 -10  0  10  20  30

t = 0.3700D + 01

Split, and Extinction

Figure 2: Numerical support splitting and merging phe-
nomena for (3), where m = 1.0625 and c = 36.
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3. Particular solutions and support
splitting phenomena

Under Assumption A let us construct Kersner’s solution
with support expanding property([7]) and Galaktionov and
Vazquez’s solution with support splitting property([3, 4])
in the form u(t, x) = f(t) + g(t)h(x) to (3). Then it holds
that

f ′ + g′h = m(f + gh)ghxx +
m

m − 1
(ghx)2 − (m − 1)c, (5)

where ′ denotes the partial derivative with respect to t.
Putting h(x) = −x2, we have the system of differential

equations f ′ = −2mfg − (m − 1)c,

g′ = −
(

2m +
4m

m − 1

)
g2.

(6)

Solving (6), we have Kersner’s solution with u(0, x) =
[σ(1 − (x/ρ)2)]+ for two parameters σ (> 0) and ρ (> 0):
(see Fig. 3)

u(t, x) = {A + (2m + 4a)t}−1 ×[
B {A + (2m + 4a)t}

2
m+1 − D{A + (2m + 4a)t}2 − x2

]
+

,

(7)

where [g]+ = max{g, 0},{
A ≡ A(ρ, σ) = ρ2

σ , B ≡ B(m, c, ρ, σ) = (σ + DA)A
m−1
m+1

,
D ≡ D(m, c) = c

4a2 , a = m
m−1 .

(8)
The extinction time T ∗(m, c, ρ, σ)(> 0) and the support
[x−(t), x+(t)] (0 ≤ t ≤ T ∗) are given by

T ∗(m, c, ρ, σ) =
1

2m + 4a

{(
B

D

)m+1
2m

− A

}
(9)

and
x±(t) =

±

{[
B {A + (2m + 4a)t}

2
m+1 − D{A + (2m + 4a)t}2

]
+

} 1
2

,

(10)

respectively.
Lemma 1. T ∗(m, c, ρ, σ) satisfies

T ∗(m, c, σ, ρ) ≤ σ

(m − 1)c
and

lim
ρ→∞

T ∗(m, c, σ, ρ) =
σ

(m − 1)c
(see F ig. 3). (11)

Putting h(x) = x2 in (5), we similarly obtain Galak-
tionov and Vazquez’s solution with u(0, x) = εx2 + σ̂ for
two parameters ε > 0 and σ̂ > 0:
u(t, x) = {E − (2m + 4a)t}−1 ×[
D{E − (2m + 4a)t}2 + G {E − (2m + 4a)t}

2
m+1

+ x2

]
+

,

(12)

where E ≡ E(ε) = ε−1 and G ≡ G(m, c, σ̂, ε) = (σ̂ −

DE)E
m−1
m+1 .
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Figure 3: The initial function of Kersner’s solution(7).
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Figure 4: Kersner’s solution.

Lemma 2. G satisfies

lim
ε→0

G(m, c, σ̂, ε) = −∞ . (13)

Moreover, in the case where G(m, c, σ̂, ε) < 0 the following
inequalities

σ̂

(m − 1)c
< t̂(m, c, σ̂, ε) < T̂ (m, ε) and

lim
ε→0

t̂(m, c, σ̂, ε) =
σ̂

(m − 1)c
(14)

hold and u satisfies (see Fig. 5 and 6)

u(t, x) > 0
(
(t, x) ∈ [0, T̂ (m, ε)) × R1 \ S

)
, (15)

u(t, x) = 0 ((t, x) ∈ S) , (16)
lim

t↗T̂ (m,ε)
u(t, 0) = 0, (17)

lim
t↗T̂ (m,ε)

u(t, x) = ∞ (x ̸= 0), (18)

where
t̂(m, c, σ̂, ε) =

1
2m + 4a

{
E −

(
−G

D

)m+1
2m

}
, (19)

T̂ (m, ε) =
E

2m + 4a
, (20)

S =
{

(t, x) | t ∈
[
t̂(m, c, σ̂, ε), T̂ (m, ε)

)
,

x2 ≤ {E − (2m + 4a)t}
2

m+1 ×[
−G − D {E − (2m + 4a)t}

2m
m+1

] }
.(21)
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Lemmas 1 and 2 are shown by simple calculations. In
Lemma 2 the appearance of the region S for a sufficiently
small ε implies the support splitting phenomena. As a
consequence of these lemmas, we obtain
Theorem 1. For arbitrary numbers σ and σ̂ (σ > σ̂ > 0)
there exist constants ρ(> 0) and ε(> 0) such that

0 < t̂(m, c, σ̂, ε) < T ∗(m, c, σ, ρ). (22)

Moreover, for these constants ρ and ε suppose u0(x) sat-
isfies [

σ
{

1 − ((x ± ξ)/ρ)2
}]

+
≤ u0(x) ≤ εx2 + σ̂ (23)

for some ξ(> 0). Then there exists t′
(
t̂(m, c, σ̂, ε) < t′ <

T ∗(m, c, σ, ρ)
)

such that supp u(t′, ·) splits into at least two
disjoint sets on the interval [−ξ, ξ].
Remark 1. The last assertion of the theorem is proved by
the comparison theorem([1]) which is concerned with the
initial functions.
Remark 2. The inequality (22) is satisfied for a sufficiently
small number ε and a sufficiently large number ρ.

4. Support splitting and merging
phenomena

Using the initial functions of Galaktionov and Vazquez’s so-
lution and Kersner’s solution, we construct an initial func-
tion (4) for which support splitting and merging phenom-
ena appear. Let two functions εx2 + σ̂ and [σ(1 − ((x ±

ξ)/ρ)2)]+ be tangent to each other at some points (±x̂, γ)
(see Fig. 7).
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Then we have

ξ2 = (σ − σ̂)
(

1
ε

+ A

)
, (24)[

σ
{

1 − ((x ± ξ)/ρ)2
}]

+
≤ εx2 + σ̂ on R1, (25)

where ξ ≡ ξ(m, c, ε, σ̂, σ, ρ).
From (10) it follows that there exists t = t∗ at which

x2
±(t) attains the maximum; that is,

t∗ ≡ t∗(m, c, σ, ρ)

=
1

2m + 4a

[{
aB

D(m + 2a)

}m+1
2m

− A

]
, (26)

x2
±(t∗) =

(m + a)B
m + 2a

{
aB

D(m + 2a)

} 1
m

. (27)

We can immediately state
Theorem 2. Assume that there exist positive constants
σ̂, ε, σ (> σ̂) and ρ such that

0 < t̂(m, c, σ̂, ε) < t∗(m, c, σ, ρ), (28)
ξ2 < x2

±(t∗(m, c, σ, ρ)). (29)

Let the initial function (4) satisfy (23). Then there exists
t′

(
t̂(m, c, σ̂, ε) < t′ < t∗(m, c, σ, ρ)

)
such that supp u(t′, ·)

splits into at least two disjoint sets on the interval [−ξ, ξ].
Moreover, [−ξ, ξ] ⊂ supp u(t∗(m, c, σ, ρ), ·), which implies
that the support is merged on [−ξ, ξ].

In the following let us consider the parameters ε, σ and
ρ satisfying (28) for an arbitrarily given number σ̂(> 0).
Let σ(> σ̂) be an arbitrarily fixed number. According to
Remark 2 of Theorem 1 we can take ε sufficiently small
and ρ sufficiently large so that (22) holds, which implies
the occurrence of the support splitting property. However,
it seems difficult for us to prove that the second inequality
of (28) holds for such a sufficient large number ρ. The
reason of the difficulty comes from the following fact:

t∗(m, c, σ, ρ) = T ∗(m, c, σ, ρ)

+
1

2m + 4a

{(
a

m + 2a

)m+1
2m

− 1

} (
B

D

)m+1
2m

, (30)

which yields
lim

ρ→+∞
t∗(m, c, σ, ρ) = −∞, (31)
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where B ≡ B(m, c, ρ, σ) is given by (8). The second in-
equality of (28) may fail. To avoid such a difficulty we
have to take ρ and σ sufficiently large so that not only the
second inequality of (28) but also (29) hold.

To find the relation between ρ and σ we tried numerical
computation in the cases where the ratio ρ

σ = constant and
where the ratio ρ2

σ = constant. We obtain the good result
in the latter case. Then we have
Theorem 3. For an arbitrary number σ̂(> 0) there exist
ε ≡ ε(m, c, σ̂)(> 0) and σ ≡ σ(m, c, σ̂, ε)(> 0) satisfying
(28) and (29).

Proof. The first inequality of (28) can be shown by putting
ε ≡ ε(m, c, σ̂) < D

σ̂ . To prove the theorem it suffices to
show the second inequality of (28) and (29) for a positive
constant σ satisfying the following inequality:

σ >

{
m + 1

m

(
A +

1
ε

)}m

D(m + 1)A1−m − DA, (32)

where A ≡ ρ2

σ = constant. From (26), (32) and Assump-
tion A we have

t∗ ≡ t∗(m, c, σ, ρ)

=
1

2m + 4a

[{
(σ + DA)
D(m + 1)

}m+1
2m

A
m−1
2m − A

]

>
1

2m + 4a

[{
m + 1

m

(
A +

1
ε

)}m+1
2

A
1−m

2 − A

]

=
1

2m + 4a

[(
m + 1

m

)m+1
2

×

{
A

m+1
2 +

m + 1
2ε

(
A +

θ

ε

)m−1
2

}
A

1−m
2 − A

]

>
1

2m + 4a

(
m + 1

m

)m+1
2 m + 1

2ε

>
1

ε(2m + 4a)
= T̂ (m, ε) > t̂(m, c, σ̂, ε), (33)

where θ is a positive constant. Thus the second inequality
of (28) holds. From (24), (27) and (32) it follows that

x2
±(t∗) =

(m + a)(σ + DA)A
m−1
m+1

m + 2a

×
{

a(σ + DA)
D(m + 2a)

} 1
m

A
m−1

m(m+1)

>
mσ

m + 1

{
σ + DA

D(m + 1)

} 1
m

A
m−1

m

>

(
A +

1
ε

)
A

1−m
m σA

m−1
m =

(
A +

1
ε

)
σ > ξ2, (34)

which implies (29), and the proof is complete.

The following theorem immediately follows from Theo-
rems 2 and 3.
Theorem 4. Let σ0 > 0 and N(≥ 2) be arbitrary fixed
number and integer, respectively. Then we can choose the
sequence {εk−1, σk, ρk}(k = 1, 2, · · · , N) satisfying

0 < t̂(m, c, σk−1, εk−1) < t∗(m, c, σk, ρk), (35)
ξ2(m, c, εk−1, σk−1, σk, ρk) < x2

±(t∗(m, c, σk, ρk)), (36)

where ρk =
√

Aσk. Moreover, for the initial function u0(x)
satisfying[

σk

{
1 − ((x ± ξk)/ρk)2

}]
+
≤ u0(x) ≤ εk−1x

2 + σk−1

on R1(k = 1, 2, · · · , N), (37)

the support splitting and merging phenomena appear at
least N times on the interval [−ξ1, ξ1], where ξk =
ξ(m, c, εk−1, σk−1, σk, ρk) (k = 1, 2, · · · , N).

We show some numerical parameters such that (35)-
(37) hold in the case where N = 3. Here t̂k−1 =
t̂(m, c, σk−1, εk−1), ξk = ξ(m, c, εk−1, σk−1, σk, ρk), and
t∗k = t∗(m, c, σk, ρk) (k = 1, 2, 3).

Let us explain the parameters in Table 1. For a given
constant σ̂ = σ0 = 0.063, we can choose ε = ε0 = 0.498 so
that the first inequality of (35) is satisfied. Then Galak-
tionov and Vazquez’s solution takes zero at x = 0 and
t = t̂0 = 0.029, and supp u(t̂0, ·) begins to split into at
least two disjoint sets. On the other hand, we can choose
σ = σ1 = 0.419 satisfying (32) with ε = ε0. The support
of Kersner’s solution with σ = σ1 monotonously expands
as t ↗ t∗1 = 0.080 > t̂0, and is given by [ξ1 − x+(t∗1), ξ1 +
x+(t∗1)] = [1.035− 1.203, 1.035 + 1.203] = [−0.168, 2.238].
Thus supp u(t∗1, ·) ⊃ [−ξ1 − x+(t∗1), ξ1 + x+(t∗1)] holds
and the support of u is merged at t = t∗1 on the inter-
val [−ξ1, ξ1]. Similarly, we can choose εi−1, t̂i−1, σi, ξi,
and t∗i (i = 2, 3), which implies that the support splitting
and merging property appears at least 3 times on [−ξ1, ξ1].
We show the initial function u0(x) in Figures 8 and 9.

Table 1: Numerical examples related to Theorem 4.
m = 1.0625, c = 36.0, A = 1

σ0 = 0.063 ε0 = 0.498 t̂0 = 0.029

σ1 = 0.419 t∗1 = 0.080 x+(t∗1) = 1.203 ξ1 = 1.035 ρ1 = 0.647 ε1 = 0.074 t̂1 = 0.192

σ2 = 2.219 t∗2 = 0.436 x+(t∗2) = 5.738 ξ2 = 5.099 ρ2 = 1.489 ε2 = 0.014 t̂2 = 1.015
σ3 = 12.31 t∗3 = 2.333 x+(t∗3) = 29.94 ξ3 = 27.04 ρ3 = 3.509
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5. Numerical support in the
initial-boundary value problem

We show the numerical behavior of the support of the so-
lutions of (3) with the conditions:

u(0, x) = u0(x), x ∈ (−1.5, 1.5), (38)
u(t,±1.5) = φ(t), t > 0. (39)

Put m = 1.5 and c = 6. We consider the following three
cases.
Case (I). u0(x) = 1.5 and φ(t) = 1.5;
Case (II). u0(x) = 2.0 and φ(t) = 1.5 + 0.5 cos(2πt);
Case (III). u0(x) = 2.0 and φ(t) = 1.5 + 0.5 cos(12πt).

In Case (I) the numerical solution converges to the so-
lution ū(x) = |x|(|x| ≤ 1.5) as t → ∞, which is derived
from a(ūx)2 − (m − 1)c = 0 on the right side of (3). If
0 ≤ u0(x) < ū(x) and φ(t) < 1.5, the comparison theorem
yields the appearance of the support splitting phenomena.
If u0(x) > 1.5 and φ(t) > 1.5, the support never splits.

In Case (II) numerically repeated support splitting and
merging phenomena are observed (see Figure 10). The
boundary value φ(t) with the period 1 takes the maximum
2.0 and the minimum 1.0. On the other hand, the period
is 1

6 in Case (III) and is less than that in Case (II). In this
case the support splitting phenomena are not observed (see
Figure.11). The numerical computation suggests that the
appearance of the support splitting and merging phenom-
ena depends on the period of φ(t). So, the mathematical
analysis for such phenomena is needed.
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Figure 11: Numerical support no-splitting phenomena in
Case (III), where m = 1.5 and c = 6.
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